Skip to main content
Log in

Requirement of the activity of hepatocyte growth factor activator inhibitor type 1 for the extracellular appearance of a transmembrane serine protease matriptase in monkey kidney COS-1 cells

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Hepatocyte growth factor activator inhibitor type I (HAI-1) is a membrane-bound, serine protease inhibitor with two protease-inhibitory domains (Kunitz domain I and II). HAI-1 is known as a physiological inhibitor of a membrane-bound serine protease, matriptase. Paradoxically, however, HAI-1 has been found to be required for the extracellular appearance of the protease in an expression system using a monkey kidney COS-1 cell line. In the present study, we show using COS-1 cells that co-expression of recombinant variants of HAI-1 with the inhibition activity toward matriptase, including a variant consisting only of Kunitz domain I (the domain responsible for inhibition of matriptase), allowed for the appearance of this protease in the conditioned medium, whereas that of the variants without the activity did not. These findings suggest that the inhibition activity toward matriptase is critical for the extracellular appearance of protease in COS-1 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HAI-1:

Hepatocyte growth factor activator inhibitor type I

HGF:

Hepatocyte growth factor

HRP:

Horseradish peroxidase

LDLRA domain:

Low-density lipoprotein receptor A domain

MMPs:

Matrix metalloproteinases

References

  • Bugge TH, List K, Szabo R (2007) Matriptase-dependent cell surface proteolysis in epithelial development and pathogenesis. Front Biosci 12:5060–5070

    Article  CAS  Google Scholar 

  • Carney TJ, von der hardt S, Sonntag C et al (2007) Inactivation of serine protease Matriptase1a by its inhibitor Hai1 is required for epithelial integrity of the zebrafish epidermis. Development 134:3461–3471

    Article  CAS  Google Scholar 

  • Darragh MR, Bhatt AS, Craik CS (2008) MT-SP1 proteolysis and regulation of cell-microenvironment interactions. Front Biosci 13:528–539

    Article  CAS  Google Scholar 

  • Denda K, Shimomura T, Kawaguchi T et al (2002) Functional characterization of Kunitz domains in hepatocyte growth factor activator inhibitor type 1. J Biol Chem 277:14053–14059

    Article  CAS  Google Scholar 

  • Désilets A, Béliveau F, Vandal G et al (2008) Mutation of G827R in matriptase causing autosomal recessive ichthyosis with hypotrichosis yields an inactive protease. J Biol Chem 283:10535–10542

    Article  Google Scholar 

  • Kataoka H, Suganuma T, Shimomura T et al (1999) Distribution of hepatocyte growth factor activator inhibitor type-1 (HAI-1) in human tissues: cellular surface localization of HAI-1 in simple columnar epithelium and its modulated expression in injured and regenerative tissues. J Histochem Cytochem 47:673–682

    CAS  Google Scholar 

  • Kilpatrick LM, Harris RL, Owen KA et al (2006) Initiation of plasminogen activation on the surface of monocytes expressing the type II transmembrane serine protease matriptase. Blood 108:2616–2623

    Article  CAS  Google Scholar 

  • Kim MG, Chen C, Lyu MS et al (1999) Cloning and chromosomal mapping of a gene isolated from thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains. Immunogenetics 49:420–428

    Article  CAS  Google Scholar 

  • Kim C, Cho Y, Kang CH et al (2005) Filamin is essential for shedding of the transmembrane serine protease, epithin. EMBO Rep 6:1045–1051

    Article  CAS  Google Scholar 

  • Kojima K, Tsuzuki S, Fushiki T et al (2008) Roles of functional and structural domains of hepatocyte growth factor activator inhibitor type 1 in the inhibition of matriptase. J Biol Chem 283:2478–2487

    Article  CAS  Google Scholar 

  • Kojima K, Tsuzuki S, Fushiki T et al (2009a) The activity of a type II transmembrane serine protease, matriptase, is dependent solely on the catalytic domain. Biosci Biotechnol Biochem 73:454–456

    Article  CAS  Google Scholar 

  • Kojima K, Tsuzuki S, Fushiki T et al. (2009b) Role of the stem domain of matriptase in the interaction with its physiological inhibitor, hepatocyte growth factor activator inhibitor type I. J Biochem 145:783–790

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lee S, Dickson RB, Lin CY (2000) Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem 275:36720–36725

    Article  CAS  Google Scholar 

  • Lee MS, Tseng IS, Wang Y et al (2007) Autoactivation of matriptase in vitro: requirement for biomembrane and LDL receptor domain. Am J Physiol Cell Physiol 293:C95–C105

    Article  CAS  Google Scholar 

  • Lin CY, Tseng IC, Chou FP et al (2008) Zymogen activation, inhibition, and ectodomain shedding of matriptase. Front Biosci 13:621–635

    Article  CAS  Google Scholar 

  • Mathias JR, Dodd ME, Walters KB et al (2007) Live imaging of chronic inflammation caused by mutation of zebrafish Hai-1. J Cell Sci 120:3372–3383

    Article  CAS  Google Scholar 

  • Miyake Y, Yasumoto M, Tsuzuki S et al. (2009) Activation of a membrane-bound serine protease matriptase on the cell surface. J Biochem doi:10.1093/jb/mvp066

  • Miyazawa K, Shimomura T, Kitamura A et al (1993) Molecular cloning and sequence analysis of the cDNA for a human serine protease reponsible for activation of hepatocyte growth factor. Structural similarity of the protease precursor to blood coagulation factor XII. J Biol Chem 268:10024–10028

    CAS  Google Scholar 

  • Oberst MD, Singh B, Ozdemirli M et al (2003a) Characterization of matriptase expression in normal human tissues. J Histochem Cytochem 51:1017–1025

    CAS  Google Scholar 

  • Oberst MD, Williams CA, Dickson RB et al (2003b) The activation of matriptase requires its noncatalytic domains, serine protease domain, and its cognate inhibitor. J Biol Chem 278:26773–26779

    Article  CAS  Google Scholar 

  • Oberst MD, Chen LY, Kiyomiya K et al (2005) HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease. Am J Physiol Cell Physiol 289:C462–C470

    Article  CAS  Google Scholar 

  • Paroutis P, Touret N, Grinstein S (2004) The pH of the secretory pathway: measurement, determinants, and regulation. Physiology 19:207–215

    Article  CAS  Google Scholar 

  • Satomi S, Yamasaki Y, Tsuzuki S et al (2001) A role for membrane-type serine protease (MT-SP1) in intestinal epithelial turnover. Biochem Biophys Res Commun 287:995–1002

    Article  CAS  Google Scholar 

  • Shimomura T, Denda K, Kitamura A et al (1997) Hepatocyte growth factor activator inhibitor, a novel Kunitz-type serine protease inhibitor. J Biol Chem 272:6370–6376

    Article  CAS  Google Scholar 

  • Shimomura T, Denda K, Kawaguchi T et al (1999) Multiple sites of proteolytic cleavage to release soluble forms of hepatocyte growth factor activator inhibitor type 1 from a transmembrane form. J Biochem 126:821–828

    CAS  Google Scholar 

  • Szabo R, Hobson JP, List K et al (2008) Potent inhibition and global co-localization implicate the transmembrane Kunitz-type serine protease inhibitor hepatocyte growth factor activator inhibitor-2 in the regulation of epithelial matriptase activity. J Biol Chem 283:29495–29504

    Article  CAS  Google Scholar 

  • Takeuchi T, Shuman MA, Craik CS (1999) Reverse biochemistry: Use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc Natl Acad Sci USA 96:11054–11061

    Article  CAS  Google Scholar 

  • Tsuzuki S, Murai N, Miyake Y et al (2005) Evidence for the occurrence of membrane-type serine protease 1/matriptase on the basolateral sides of enterocytes. Biochem J 388:679–687

    Article  CAS  Google Scholar 

  • Yamasaki Y, Satomi S, Murai N et al (2003) Inhibition of membrane-type serine protease 1/matriptase by natural and synthetic protease inhibitors. J Nutr Sci Vitaminol (Tokyo) 49:27–32

    CAS  Google Scholar 

  • Zhang T, Cai X, Schlegelberger B et al (1998) Assignment1 of human putative tumor suppressor genes ST13 (alias SNC6) and ST14 (alias SNC19) to human chromosome bands 22q13 and 11q24–>q25 by in situ hybridization. Cytogenet Cell Genet 83:56–57

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grants-in-Aid for Scientific Research (Nos. 14658203 and 17380065 to K. I.) from the Japan Society of the Promotion of Sciences. We thank K. Kojima and Seiya Mochida for their technical assistance and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniyo Inouye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyake, Y., Tsuzuki, S., Yasumoto, M. et al. Requirement of the activity of hepatocyte growth factor activator inhibitor type 1 for the extracellular appearance of a transmembrane serine protease matriptase in monkey kidney COS-1 cells. Cytotechnology 60, 95–103 (2009). https://doi.org/10.1007/s10616-009-9219-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-009-9219-7

Keywords

Navigation