Skip to main content
Log in

The heterogeneous nature of polyethylenimine-DNA complex formation affects transient gene expression

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Polyethylenimine has been used widely in transient gene expression with mammalian cells. To further understand its mediation of gene transfer, the transfection of HEK 293-F cells with dynamically prepared PEI/DNA complexes was studied with the help of fluorescent labeling. The efficiency of complex endocytosis/phagocytosis was found to correlate with the average sizes of complexes applied and complexes greater than 1 μm in diameter were likely excluded by the cells. Coupled with complex growth in size, the degree of association between PEI and DNA increased with the time of complex formation in the presence of competing ions. The blocking of transcription by complex formation necessitated complex dissociation in the nuclear environment for transcription to happen. Intracellularly, the fates of PEI complexed DNA therefore may be mostly determined by the degree of association. Results also suggested that the uptake of PEI/DNA complexes and subsequent protein expression were independent of the cell cycle stages of HEK 293-F cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA et al (2002) Current protocols in molecular biology. John Wiley & Sons, New Jersey

    Google Scholar 

  • Backliwal G, Hildinger M, Chenuet S, Wulhfard S, De Jesus M, Wurm FM (2008) Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Res 36:e96

    Article  Google Scholar 

  • Baldi L, Muller N, Picasso S, Jacquet R, Girard P, Thanh HP, Derow E, Wurm FM (2005) Transient gene expression in suspension HEK-293 cells: application to large-scale protein production. Biotechnol Prog 21:148–153

    Article  CAS  Google Scholar 

  • Baldi L, Hacker DL, Adam M, Wurm FM (2007) Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol Lett 29:677–684

    Article  CAS  Google Scholar 

  • Bertschinger M, Backliwal G, Schertenleib A, Jordan M, Hacker DL, Wurm FM (2006) Disassembly of polyethylenimine-DNA particles in vitro: implications for polyethylenimine-mediated DNA delivery. J Control Release 116:96–104

    Article  CAS  Google Scholar 

  • Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    Article  CAS  Google Scholar 

  • Brunner S, Sauer T, Carotta S, Cotten M, Saltik M, Wagner E (2000) Cell cycle dependence of gene transfer by lipoplex polyplex and recombinant adenovirus. Gene Ther 7:401–407

    Article  CAS  Google Scholar 

  • Brunner S, Furtbauer E, Sauer T, Kursa M, Wagner E (2002) Overcoming the nuclear barrier: cell cycle independent nonviral gene transfer with linear polyethylenimine or electroporation. Mol Ther 5:80–86

    Article  CAS  Google Scholar 

  • Capecchi MR (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22:479–488

    Article  CAS  Google Scholar 

  • Chu YW, Wang R, Schmid I, Sakamoto KM (1999) Analysis with flow cytometry of green fluorescent protein expression in leukemic cells. Cytometry 36:333–339

    Article  CAS  Google Scholar 

  • Derouazi M, Girard P, Van Tilborgh F, Iglesias K, Muller N, Bertschinger M, Wurm FM (2004) Serum-free large-scale transient transfection of CHO cells. Biotechnol Bioeng 87:537–545

    Article  CAS  Google Scholar 

  • Dunlap DD, Maggi A, Soria MR, Monaco L (1997) Nanoscopic structure of DNA condensed for gene delivery. Nucleic Acids Res 25:3095–3101

    Article  CAS  Google Scholar 

  • Forbes DJ (1992) Structure and function of the nuclear-pore complex. Annu Rev Cell Biol 8:495–527

    Article  CAS  Google Scholar 

  • Girard P, Porte L, Berta T, Jordan M, Wurm FM (2001) Calcium phosphate transfection optimization for serum-free suspension culture. Cytotechnology 35:175–180

    Article  CAS  Google Scholar 

  • Girard P, Derouazi M, Baumgartner G, Bourgeois M, Jordan M, Jacko B, Wurm FM (2002) 100-liter transient transfection. Cytotechnology 38:15–21

    Article  CAS  Google Scholar 

  • Godbey WT, Wu KK, Mikos AG (1999) Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc Natl Acad Sci USA 96:5177–5181

    Article  CAS  Google Scholar 

  • Grosjean F, Batard P, Jordan M, Wurm FM (2002) S-phase synchronized CHO cells show elevated transfection efficiency and expression using CaPi. Cytotechnology 38:57–62

    Article  CAS  Google Scholar 

  • Grosse S, Thevenot G, Monsigny M, Fajac I (2006) Which mechanism for nuclear import of plasmid DNA complexed with polyethylenimine derivatives? J Gene Med 8:845–851

    Article  CAS  Google Scholar 

  • Han X, Sun L, Fang Q, Li D, Gong X, Wu Y, Yang S, Shen BQ (2007) Transient expression of osteopontin in HEK 293 cells in serum-free culture. Enzyme Microb Technol 41:133–140

    Article  CAS  Google Scholar 

  • Kopatz I, Remy JS, Behr JP (2004) A model for non-viral gene delivery: through syndecan adhesion molecules and powered by actin. J Gene Med 6:769–776

    Article  CAS  Google Scholar 

  • Kunath K, von Harpe A, Fischer D, Peterson H, Bickel U, Voigt K, Kissel T (2003) Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release 89:113–125

    Article  CAS  Google Scholar 

  • Löfås S, Johnsson B (1990) A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands. J Chem Commun 21:1526–1528

    Google Scholar 

  • Lungwitz U, Breunig M, Blunk T, Gopferich A (2005) Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 60:247–266

    Article  CAS  Google Scholar 

  • Mannisto M, Ronkko S, Matto M, Honkakoski P, Hyttinen M, Pelkonen J, Urtti A (2005) The role of cell cycle on polyplex-mediated gene transfer into a retinal pigment epithelial cell line. J Gene Med 7:466–476

    Article  CAS  Google Scholar 

  • Ogris M, Steinlein P, Kursa M, Mechtler K, Kircheis R, Wagner E (1998) The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther 5:1425–1433

    Article  CAS  Google Scholar 

  • Schlaeger EJ, Christensen K (1999) Transient gene expression in mammalian cells grown in serum-free suspension culture. Cytotechnology 30:71–83

    Article  CAS  Google Scholar 

  • Sun X, Goh PE, Wong KT, Mori T, Yap MG (2006) Enhancement of transient gene expression by fed-batch culture of HEK 293 EBNA1 cells in suspension. Biotechnol Lett 28:843–848

    Article  CAS  Google Scholar 

  • Sun X, Hia HC, Goh PE, Yap MG (2008) High density transient gene expression in suspension-adapted 293 EBNA1 cells. Biotechnol Bioeng 99:108–116

    Article  CAS  Google Scholar 

  • Thomas M, Klibanov AM (2003) Non-viral gene therapy: polycation-mediated DNA delivery. Appl Microbiol Biotechnol 62:27–34

    Article  CAS  Google Scholar 

  • Tseng WC, Haselton FR, Giorgio TD (1999) Mitosis enhances transgene expression of plasmid delivered by cationic liposomes. Biochim Biophys Acta 1445:53–64

    CAS  Google Scholar 

  • Ungaro F, De Rosa G, Miro A, Quaglia F (2003) Spectrophotometric determination of polyethylenimine in the presence of an oligonucleotide for the characterization of controlled release formulations. J Pharm Biomed Anal 31:143–149

    Article  CAS  Google Scholar 

  • Werth S, Urban-Klein B, Dai L, Hobel S, Grzelinski M, Bakowsky U, Czubayko F, Aigner A (2006) A low molecular weight fraction of polyethylenimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes. J Control Release 112:257–270

    Article  CAS  Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the National High Technology Program (National 863 Plan), Project No. 2007AA021702, the Ministry of Science & Technology, China. The authors wish to thank Mr. Zhao-feng Luo, the University of Science & Technology of China, Hefei, for his outstanding assistance in instrumental analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Q. Shen.

Additional information

The authors Xiangzong Han and Qiangyi Fang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X., Fang, Q., Yao, F. et al. The heterogeneous nature of polyethylenimine-DNA complex formation affects transient gene expression. Cytotechnology 60, 63–75 (2009). https://doi.org/10.1007/s10616-009-9215-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-009-9215-y

Keywords

Navigation