Skip to main content
Log in

5-Azacytidine facilitates osteogenic gene expression and differentiation of mesenchymal stem cells by alteration in DNA methylation

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are considered to be one of the most promising therapeutic cell sources as they encompass a plasticity of multiple cell lineages. The challenge in using these cells lies in developing well-defined protocols for directing cellular differentiation to generate a desired lineage. In this study, we investigated the effect of 5-azacytidine, a DNA demethylating agent, on osteogenic differentiation of MSCs. The cells were exposed to 5-azacytidine in culture medium for 24 h prior to osteogenic induction. Osteogenic differentiation was determined by several the appearance of a number of osteogenesis characteristics, including gene expression, ALP activity, and calcium mineralization. Pretreatment of MSCs with 5-azacytidine significantly facilitated osteogenic differentiation and was accompanied by hypomethylation of genomic DNA and increased osteogenic gene expression. Taking dlx5 as a representative, methylation alterations of the “CpG island shore” in the promoter caused by 5-azacytidine appeared to contribute to osteogenic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anjos-Afonso F, Siapati EK et al (2004) In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci 117:5655–5664. doi:10.1242/jcs.01488

    Article  CAS  Google Scholar 

  • Antonitsis P, Ioannidou-Papagiannaki E et al (2007) In vitro cardiomyogenic differentiation of adult human bone marrow mesenchymal stem cells: the role of 5-azacytidine. Interact Cardiovasc Thorac Surg 6:593–597. doi:10.1510/icvts.2007.157875

    Article  Google Scholar 

  • Avbersek-Luznik I, Gmeiner Stopar T et al (2007) Activity or mass concentration of bone-specific alkaline phosphatase as a marker of bone formation. Clin Chem Lab Med 45:1014–1018. doi:10.1515/CCLM.2007.186

    Article  CAS  Google Scholar 

  • Burlacu A, Rosca AM et al (2008) Promoting effect of 5-azacytidine on the myogenic differentiation of bone marrow stromal cells. Eur J Cell Biol 87:173–184. doi:10.1016/j.ejcb.2007.09.003

    Article  CAS  Google Scholar 

  • Chen J, Ghazawi FM et al (2006) Valproic acid and butyrate induce apoptosis in human cancer cells through inhibition of gene expression of Akt/protein kinase B. Mol Cancer 5:71. doi:10.1186/1476-4598-5-71

    Article  CAS  Google Scholar 

  • Chen TH, Chen WM et al (2007) Sodium butyrate activates ERK to regulate differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 355:913–918. doi:10.1016/j.bbrc.2007.02.057

    Article  CAS  Google Scholar 

  • Chen Y, Shao JZ et al (2008) Mesenchymal stem cells: a promising candidate in regenerative medicine. Int J Biochem Cell Biol 40:815–820. doi:10.1016/j.biocel.2008.01.007

    Article  CAS  Google Scholar 

  • Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21:5483–5495. doi:10.1038/sj.onc.1205699

    Article  CAS  Google Scholar 

  • Delorme B, Chateauvieux S et al (2006) The concept of mesenchymal stem cells. Regen Med 1:497–509. doi:10.2217/17460751.1.4.497

    Article  CAS  Google Scholar 

  • Dimai HP, Linkhart TA et al (1998) Alkaline phosphatase levels and osteoprogenitor cell numbers suggest bone formation may contribute to peak bone density differences between two inbred strains of mice. Bone 22:211–216. doi:10.1016/S8756-3282(97)00268-8

    Article  CAS  Google Scholar 

  • Dominici M, Le Blanc K et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317. doi:10.1080/14653240600855905

    Article  CAS  Google Scholar 

  • Egger G, Aparicio AM et al (2007) Inhibition of histone deacetylation does not block resilencing of p16 after 5-aza-2′-deoxycytidine treatment. Cancer Res 67:346–353. doi:10.1158/0008-5472.CAN-06-2845

    Article  CAS  Google Scholar 

  • Fang JY, Lu YY (2002) Effects of histone acetylation and DNA methylation on p21 (WAF1) regulation. World J Gastroenterol 8:400–405

    CAS  Google Scholar 

  • Fouse SD, Shen Y et al (2008) Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell 2:160–169. doi:10.1016/j.stem.2007.12.011

    Article  CAS  Google Scholar 

  • Freimoser FM, Jakob CA et al (1999) The MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay is a fast and reliable method for colorimetric determination of fungal cell densities. Appl Environ Microbiol 65:3727–3729

    CAS  Google Scholar 

  • Halaban R, Krauthammer M et al (2009) Integrative analysis of epigenetic modulation in melanoma cell response to decitabine: clinical implications. PLoS ONE 4:e4563. doi:10.1371/journal.pone.0004563

    Article  Google Scholar 

  • Harder J, Engelstaedter V et al (2009) CpG-island methylation of the ER promoter in colorectal cancer: analysis of micrometastases in lymph nodes from UICC stage I and II patients. Br J Cancer 100:360–365. doi:10.1038/sj.bjc.6604859

    Article  CAS  Google Scholar 

  • Hosseinkhani M, Hasegawa K et al (2007) Trichostatin A induces myocardial differentiation of monkey ES cells. Biochem Biophys Res Commun 356:386–391. doi:10.1016/j.bbrc.2007.02.151

    Article  CAS  Google Scholar 

  • Hsieh J, Nakashima K et al (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA 101:16659–16664. doi:10.1073/pnas.0407643101

    Article  CAS  Google Scholar 

  • Imre R, Fekete P (1983) A rapid technique for alkaline phosphatase enzyme activity in tissues. Acta Histochem 73:17–21

    CAS  Google Scholar 

  • Irizarry RA, Ladd-Acosta C et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186. doi:10.1038/ng.298

    Article  CAS  Google Scholar 

  • Issa JP (2004) CpG island methylator phenotype in cancer. Nat Rev 4:988–993

    CAS  Google Scholar 

  • Jaiswal RK, Jaiswal N et al (2000) Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275:9645–9652. doi:10.1074/jbc.275.13.9645

    Article  CAS  Google Scholar 

  • Juttermann R, Li E et al (1994) Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci USA 91:11797–11801. doi:10.1073/pnas.91.25.11797

    Article  CAS  Google Scholar 

  • Koc ON, Lazarus HM (2001) Mesenchymal stem cells: heading into the clinic. Bone Marrow Transplant 27:235–239. doi:10.1038/sj.bmt.1702791

    Article  CAS  Google Scholar 

  • Liu Y, Song J et al (2003) Growth and differentiation of rat bone marrow stromal cells: does 5-azacytidine trigger their cardiomyogenic differentiation? Cardiovasc Res 58:460–468. doi:10.1016/S0008-6363(03)00265-7

    Article  CAS  Google Scholar 

  • Locklin RM, Oreffo RO et al (1998) Modulation of osteogenic differentiation in human skeletal cells in vitro by 5-azacytidine. Cell Biol Int 22:207–215. doi:10.1006/cbir.1998.0240

    Article  CAS  Google Scholar 

  • Meijer GJ, de Bruijn JD et al (2007) Cell-based bone tissue engineering. PLoS Med 4:e9. doi:10.1371/journal.pmed.0040009

    Article  Google Scholar 

  • Sato F, Meltzer SJ (2006) CpG island hypermethylation in progression of esophageal and gastric cancer. Cancer 106:483–493. doi:10.1002/cncr.21657

    Article  CAS  Google Scholar 

  • Sulewska A, Niklinska W et al (2007) DNA methylation in states of cell physiology and pathology. Folia histochemica et cytobiologica / Polish Academy of Sciences. Pol Histochem Cytochem Soc 45:149–158

    CAS  Google Scholar 

  • Teodoridis JM, Hardie C et al (2008) CpG island methylator phenotype (CIMP) in cancer: causes and implications. Cancer Lett 268:177–186. doi:10.1016/j.canlet.2008.03.022

    Article  CAS  Google Scholar 

  • Wu YH, Tsai Chang JH et al (2007) Xeroderma pigmentosum group C gene expression is predominantly regulated by promoter hypermethylation and contributes to p53 mutation in lung cancers. Oncogene 26:4761–4773. doi:10.1038/sj.onc.1210284

    Article  CAS  Google Scholar 

  • Yeo S, Jeong S et al (2007) Characterization of DNA methylation change in stem cell marker genes during differentiation of human embryonic stem cells. Biochem Biophys Res Commun 359:536–542. doi:10.1016/j.bbrc.2007.05.120

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant J20020579-30116 from the Key Science and Technology Foundation of Zhejiang Province, People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-Shun Zhou or Jian-Zhong Shao.

Additional information

Guo-Shun Zhou and Xiao-Lei Zhang contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, GS., Zhang, XL., Wu, JP. et al. 5-Azacytidine facilitates osteogenic gene expression and differentiation of mesenchymal stem cells by alteration in DNA methylation. Cytotechnology 60, 11–22 (2009). https://doi.org/10.1007/s10616-009-9203-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-009-9203-2

Keywords

Navigation