, Volume 59, Issue 2, pp 121–134 | Cite as

Development of an in vitro culture method for cells and tissues from the zebra mussel (Dreissena polymorpha)

  • Brian Quinn
  • Mark J. Costello
  • Germaine Dorange
  • James G. Wilson
  • Carmel Mothersill


Despite the successful transfer of mammalian in vitro techniques for use with fish and other vertebrates, little progress has been made in the area of invertebrate tissue culture. This paper describes the development of an in vitro technique for the culture of both cells in suspension and tissue explants from the gill, digestive gland and mantle of the zebra mussel (Dreissena polymorpha) and their successful maintenance in culture for up to 14 days. Cell suspensions from the gills and digestive gland were the most successful technique developed with viability >80% maintained for up to 8 days in culture, suitable for use in short term toxicity tests. Tissue explants from the mantle were also maintained in culture for up to 14 days. This paper describes the challenges involved in the development of a novel in vitro culture technique for aquatic invertebrates.


In vitro Cell culture Invertebrate Zebra mussel 


  1. Barik SK, Jena JK, Janaki KR (2004) In vitro explant culture of mantle epithelium of freshwater pearl mussel. Indian J Exp Biol 42(12):1235–1238Google Scholar
  2. Binelli A, Ricciardi F, Riva C, Provini A (2005) Screening of POP pollution by AChE and EROD activities in zebra mussels from the Italian great lakes. Chemosphere 61(8):1074–1082. doi: 10.1016/j.chemosphere.2005.03.047 CrossRefGoogle Scholar
  3. Birmelin C, Pipe RK, Goldfarb PS, Livingstone DR (1999) Primary cell-culture of the digestive gland of the marine mussel Mytilus edulis: a time-course study of antioxidant- and biotransformation-enzyme activity and ultrastructural changes. Mar Biol (Berl) 135:65–75. doi: 10.1007/s002270050602 CrossRefGoogle Scholar
  4. Brewster F, Nicholson BL (1979) In vitro maintenance of amoebocytes from the American oyster (Crassostrea virginica). J Fish Res Board Can 36:461–467Google Scholar
  5. Buchanan JT, La Peyre JF, Cooper RK, Tiersch TR (1999) Improved attachment and spreading in primary cell cultures of the eastern oyster, Crassostrea virginica. In Vitro Cell Dev Biol 35:593–598. doi: 10.1007/s11626-999-0097-2 CrossRefGoogle Scholar
  6. Canesi L, Borghi C, Ciacci C, Fabbri R, Lorusso LC, Vergani L, Marcomini A, Poiana G (2008) Short-term effects of environmentally relevant concentrations of EDC mixtures on Mytilus galloprovincialis digestive gland. Aquat Toxicol 87(4):272–279. doi: 10.1016/j.aquatox.2008.02.007 CrossRefGoogle Scholar
  7. Chelomin VP, Zakhartsev MV, Kurilenko AV, Belcheva NN (2005) An in vitro study of the effect of reactive oxygen species on subcellular distribution of deposited cadmium in digestive gland of mussel Crenomytilus grayanus. Aquat Toxicol 73:181–189. doi: 10.1016/j.aquatox.2005.03.009 CrossRefGoogle Scholar
  8. Cornet M (2006) Primary mantle tissue culture from the bivalve mollusk Mytilus galloprovincialis: investigations on the growth promoting activity of the serum used for medium supplementation. J Biotechnol 123:78–84. doi: 10.1016/j.jbiotec.2005.10.016 CrossRefGoogle Scholar
  9. Domart-Coulon I, Doumenc D, Auzoux-Bordenave S, Le Fichant Y (1994) Identification of media supplements that improve the viability of primarily cell cultures of Crassostrea gigas oysters. Cytotechnology 16:109–120. doi: 10.1007/BF00754613 CrossRefGoogle Scholar
  10. Domart-Coulon I, Auzoux-Bordenave S, Doumenc D, Khalanski M (2000) Cytotoxicity assessment of antibiofouling compounds and by-products in marine bivalve cell culture. Toxicol In Vitro 14:245–251. doi: 10.1016/S0887-2333(00)00011-4 CrossRefGoogle Scholar
  11. Dowling K, Mothersill C (1999) Use of rainbow trout primary epidermal cell cultures as an alternative to immortalized cell lines in toxicity assessment: a study with Nonoxynol. Environ Toxicol Chem 18:2846–2850. doi: 10.1897/1551-5028(1999)018<2846:UORTPE>2.3.CO;2 CrossRefGoogle Scholar
  12. Gomez-Mendikute A, Elizondo M, Venier P, Cajaraville MP (2005) Characterization of mussel gill cells in vivo and in vitro. Cell Tissue Res 321:131–140. doi: 10.1007/s00441-005-1093-9 CrossRefGoogle Scholar
  13. Hansen E (1976) A cell line from embryos of Biophalaria glabrata (Plumonata): establishment and characteristics. In: Maramorosch K (ed) Invertebrate tissue culture: research applications. Academic Press, New York, pp 75–97Google Scholar
  14. Kilemade MF, Mothersill C (2001) Heat shock protein 70 levels in rainbow trout primary epidermal cultures in response to 2, 4-dichloroaniline exposure: a novel in vitro aquatic toxicity marker. Environ Toxicol 16(3):253–259. doi: 10.1002/tox.1031 CrossRefGoogle Scholar
  15. Kleinschuster SJ, Parent J, Walker CW, Farley CA (1996) A cardiac cell line from Mya arenaria (Linnaeus, 1759). J Shellfish Res 15:695–707Google Scholar
  16. Koyama S, Aizawa M (2000) Tissue culture of the deep sea bivalve Calyptogena soyoae. Extremophiles 4:385–389. doi: 10.1007/s007920070009 CrossRefGoogle Scholar
  17. Le Marrec F (1995) Etablissement de cultures primaires de cellules de bivalves marins. Doctorate, Universite de Bretagne Occidentale, BrestGoogle Scholar
  18. Le Marrec-Croq F, Fritayre P, Chesne C, Guillouzo A, Dorange G (1998) Cryopreservation of Pecten maximus heart cells. Cryobiology 37:200–206. doi: 10.1006/cryo.1998.2113 CrossRefGoogle Scholar
  19. Le Pennec G, Le Penec M (2001) Acinar primary cell culture from the digestive gland of Pecten maximus (L.): an original model for ecotoxicological purposes. J Exp Mar Biol Ecol 259:171–187. doi: 10.1016/S0022-0981(01)00232-5 CrossRefGoogle Scholar
  20. Le Pennec G, Le Penec M (2003) Induction of glutathione-S-transferase in primary cultured digestive gland acini from the mollusk bivalve Pecten maximus (L.): application of a new cellular model in biomonitoring studies. Aquat Toxicol 64:131–142. doi: 10.1016/S0166-445X(03)00041-9 CrossRefGoogle Scholar
  21. Lyons-Alcantara M, Lambkin HA, Mothersill C (1999) Antigenic characterisation of Nephrops nor_egicus (L.) hepatopancreas cells. Cell Biochem Funct 17:157–164. doi: 10.1002/(SICI)1099-0844(199909)17:3<157::AID-CBF823>3.0.CO;2-U CrossRefGoogle Scholar
  22. Marie V, Baudrimont M, Boudou A (2006) Cadmium and zinc bioaccumulation and metallothionein response in two freshwater bivalves (Corbicula fluminea and Dreissena polymorpha) transplanted along a polymetallic gradient. Chemosphere 65(4):609–617. doi: 10.1016/j.chemosphere.2006.01.074 CrossRefGoogle Scholar
  23. Minier C, Abarnou A, Jaouen-Madoulet A, Le Guellec A-M, Bocquene RG, Leboulenger F (2005) A pollution-monitoring pilot study involving contaminant and biological measurements in the Seine estuary, France using the zebra mussel (Dreissena polymorpha). Environ Toxicol Chem 25:112–119. doi: 10.1897/05-161R.1 CrossRefGoogle Scholar
  24. Mitsuhashi J (1989) Invertebrate cell system applications. Vol. I, II. CRC Press, Boca RatonGoogle Scholar
  25. Mothersill C, Lyng F, Lyons M, Cottell D (1995) Growth and differentiation of epidermal cells from the rainbow trout established as explants and maintained in various media. J Fish Biol 46:1011–1025. doi: 10.1111/j.1095-8649.1995.tb01406.x CrossRefGoogle Scholar
  26. Nichols JW, Schultz IR, Fitzsimmons PN (2006) In vitro-in vivo extrapolation of quantitative hepatic biotransformation data for fish I. A review of methods, and strategies for incorporation intrinsic clearance estimates into chemical kinetic models. Aquat Toxicol 78:74–90. doi: 10.1016/j.aquatox.2006.01.017 CrossRefGoogle Scholar
  27. Odinstova NA, Khomenko AV (1991) Primary cell culture from embryos of the Japanese scallop Mizuchopecten yessoensis (Bivalvia). Cytotechnology 6:49–54. doi: 10.1007/BF00353702 CrossRefGoogle Scholar
  28. Odinstova NA, Ermak AV, Tsal LG (1994) Substrate selection for long-term cultivation of marine invertebrate cells. Comp Biochem Physiol 107A:613–619. doi: 10.1016/0300-9629(94)90360-3 CrossRefGoogle Scholar
  29. Parolini M, Binelli A, Cogni D, Riva C, Povini A (2009) An in vitro biomarker approach for the evaluation of the ecotoxicity of non-steroidal anti-inflammatory drugs (NSAIDs). Toxicol In Vitro (in press)Google Scholar
  30. Quinn B, Gagne F, Costello M, McKenzie C, Wilson J, Mothersill C (2004) The endocrine disrupting effect of municipal effluent on the zebra mussel (Dreissena polymorpha). Aquat Toxicol 66:279–292. doi: 10.1016/j.aquatox.2003.10.007 CrossRefGoogle Scholar
  31. Quinn B, Gagne F, Blaise C, Costello MJ, Wilson J, Mothersill C (2006) Evaluation of the lethal and sub-lethal toxicity and potential endocrine disrupting effect of nonylphenol on the zebra mussel (Dreissena polymorpha). Comp Biochem Physiol 142C:118–127Google Scholar
  32. Renault T, Flaujac G, Le Deuff R-M (1995) Isolation and culture of heart cells from the European flat oyster, Ostrea edulis. Methods Cell Sci 17:199–205. doi: 10.1007/BF00996127 CrossRefGoogle Scholar
  33. Rinkevich B (1999) Cell cultures from marine invertebrates: obstacles, new approaches and recent improvements. J Biotechnol 70:133–153. doi: 10.1016/S0168-1656(99)00067-X CrossRefGoogle Scholar
  34. Strum A, Cravedi JP, Perdu E, Baradat M, Segner H (2001) Effects of prochloraz and nonylphenol diethoxylate on hepatic biotransforation enzymes in trout: a comparative in vitro/in vivo-assessment using cultured hepatocytes. Aquat Toxicol 53:229–245. doi: 10.1016/S0166-445X(01)00168-0 CrossRefGoogle Scholar
  35. Takeuchi Y, Yamamoto S, Odo S (1994) Primary and secondary cultures of larval cells of Pacific oyster, Cressostrea gigas. J Mar Biotechnol 1:171–175Google Scholar
  36. Wen CM, Kou GH, Chen SN (1993) Cultivation of cells from the heart of the hard clam, Meretrix lusoria (Roding). J Tissue Cult Methods 15:123–130. doi: 10.1007/BF02388265 CrossRefGoogle Scholar
  37. Zaldibar B, Cancio I, Marigomez I (2004) Circatidal variation in epithelial cell proliferation in the mussel digestive gland and stomach. Cell Tissue Res 318(2):395–402. doi: 10.1007/s00441-004-0960-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Brian Quinn
    • 1
    • 5
    • 7
  • Mark J. Costello
    • 2
    • 3
  • Germaine Dorange
    • 4
  • James G. Wilson
    • 5
  • Carmel Mothersill
    • 1
    • 6
  1. 1.Radiation and Environmental Science Centre, Focas InstituteDublin Institute of TechnologyDublin 8Ireland
  2. 2.Ecological Consultancy Services Ltd.Kimmage Dublin 12Ireland
  3. 3.Leigh Marine LaboratoryUniversity of AucklandWarkworthNew Zealand
  4. 4.Unite de Culture CellulaireUniversity de Bretagne OccidentaleBrestFrance
  5. 5.Zoology DepartmentUniversity of DublinDublin 2Ireland
  6. 6.Medical Physics and Applied Radiation Sciences Unit, Nuclear Research Building, Room 228McMaster UniversityHamiltonCanada
  7. 7.ARE SHELLTEC Research CentreGalway-Mayo Institute of TechnologyGalwayIreland

Personalised recommendations