Skip to main content
Log in

An improved protocol for the isolation and cultivation of embryonic mouse myocytes

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

In vitro cultures of cardiomyocytes have proven to be a useful tool for toxicological, pharmacological, and developmental studies, as well as for the study of the cellular and molecular mechanisms responsible for proper myocyte function. One deficient area of research is that of myocyte proliferation. Cardiomyocyte proliferation dramatically diminishes soon after birth and has a very limited occurrence within the adult heart, thus limiting the use of adult cells for proliferation studies. An improved understanding of the requirements for myocyte proliferation will allow for the development of better approaches to repair damaged heart tissue. Here, we provide a protocol for the reliable isolation of embryonic mouse myocytes. These myocytes behave similarly to those in vivo, including their ability to proliferate, providing an ideal system for the study of cardiomyocyte proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahuja P, Perriard E, Perriard JC, Ehler E (2004) Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes. J Cell Sci 117:3295–3306

    Article  CAS  Google Scholar 

  • Ahuja P, Sdek P, MacLellan WR (2007) Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 87:521–544

    Article  CAS  Google Scholar 

  • Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  CAS  Google Scholar 

  • Boyer AS, Ayerinskas II, Vincent EB, McKinney LA, Weeks DL, Runyan RB (1999) TGFbeta2 and TGFbeta3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev Biol 208:530–545

    Article  CAS  Google Scholar 

  • Bruel A, Christoffersen TE, Nyengaard JR (2007) Growth hormone increases the proliferation of existing cardiac myocytes and the total number of cardiac myocytes in the rat heart. Cardiovasc Res 76:400–408

    Article  CAS  Google Scholar 

  • Burt JM (1982) Electrical and contractile consequences of Na+or Ca2+ gradient reduction in cultured heart cells. J Mol Cell Cardiol 14:99–110

    Article  CAS  Google Scholar 

  • Camenisch TD, Molin DG, Person A, Runyan RB, Gittenberger-de Groot AC, McDonald JA, Klewer SE (2002) Temporal and distinct TGFbeta ligand requirements during mouse and avian endocardial cushion morphogenesis. Dev Biol 248:170–181

    Article  CAS  Google Scholar 

  • Dickson MC, Slager HG, Duffie E, Mummery CL, Akhurst RJ (1993) RNA and protein localisations of TGF beta 2 in the early mouse embryo suggest an involvement in cardiac development. Development 117:625–639

    CAS  Google Scholar 

  • Eltawil NM, De Bari C, Achan P, Pitzalis C, Dell’accio F (2008) A novel in vivo murine model of cartilage regeneration. Age and strain-dependent outcome after joint surface injury. Osteoarthritis Cartilage. doi:10.1016/j.joca.2008.11.003

    Google Scholar 

  • Fu J, Gao J, Pi R, Liu P (2005) An optimized protocol for culture of cardiomyocyte from neonatal rat. Cytotechnology 49:109–116

    Article  CAS  Google Scholar 

  • Galli LM, Willert K, Nusse R, Yablonka-Reuveni Z, Nohno T, Denetclaw W, Burrus LW (2004) A proliferative role for Wnt-3a in chick somites. Dev Biol 269:489–504

    Article  CAS  Google Scholar 

  • Giordano FJ, Gerber HP, Williams SP, VanBruggen N, Bunting S, Ruiz-Lozano P, Gu Y, Nath AK, Huang Y, Hickey R, Dalton N, Peterson KL, Ross J Jr, Chien KR, Ferrara N (2001) A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci U S A 98:5780–5785

    Article  CAS  Google Scholar 

  • Hassink RJ, Pasumarthi KB, Nakajima H, Rubart M, Soonpaa MH, de la Riviere AB, Doevendans PA, Field LJ (2008) Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovasc Res 78:18–25

    Article  CAS  Google Scholar 

  • Lathia JD, Okun E, Tang SC, Griffioen K, Cheng A, Mughal MR, Laryea G, Selvaraj PK, ffrench-Constant C, Magnus T, Arumugam TV, Mattson MP (2008) Toll-like receptor 3 is a negative regulator of embryonic neural progenitor cell proliferation. J Neurosci 28:13978–13984

    Article  CAS  Google Scholar 

  • Li F, Wang X, Bunger PC, Gerdes AM (1997a) Formation of binucleated cardiac myocytes in rat heart: I. Role of actin-myosin contractile ring. J Mol Cell Cardiol 29:1541–1551

    Article  CAS  Google Scholar 

  • Li F, Wang X, Gerdes AM (1997b) Formation of binucleated cardiac myocytes in rat heart: II. Cytoskeletal organisation. J Mol Cell Cardiol 29:1553–1565

    Article  CAS  Google Scholar 

  • Nickson P, Toth A, Erhardt P (2007) PUMA is critical for neonatal cardiomyocyte apoptosis induced by endoplasmic reticulum stress. Cardiovasc Res 73:48–56

    Article  CAS  Google Scholar 

  • Nuss HB, Marban E (1994) Electrophysiological properties of neonatal mouse cardiac myocytes in primary culture. J Physiol 479(Pt 2):265–279

    Google Scholar 

  • Pasumarthi KB, Kardami E, Cattini PA (1996) High and low molecular weight fibroblast growth factor-2 increase proliferation of neonatal rat cardiac myocytes but have differential effects on binucleation and nuclear morphology. Evidence for both paracrine and intracrine actions of fibroblast growth factor-2. Circ Res 78:126–136

    CAS  Google Scholar 

  • Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190

    Article  CAS  Google Scholar 

  • Qi X, Yang G, Yang L, Lan Y, Weng T, Wang J, Wu Z, Xu J, Gao X, Yang X (2007) Essential role of Smad4 in maintaining cardiomyocyte proliferation during murine embryonic heart development. Dev Biol 311:136–146

    Article  CAS  Google Scholar 

  • Rodgers LS, Lalani S, Hardy KM, Xiang X, Broka D, Antin PB, Camenisch TD (2006) Depolymerized hyaluronan induces vascular endothelial growth factor, a negative regulator of developmental epithelial-to-mesenchymal transformation. Circ Res 99:583–589

    Article  CAS  Google Scholar 

  • Rosenblatt-Velin N, Lepore MG, Cartoni C, Beermann F, Pedrazzini T (2005) FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. J Clin Invest 115:1724–1733

    Article  CAS  Google Scholar 

  • Song W, Lu X, Feng Q (2000) Tumor necrosis factor-alpha induces apoptosis via inducible nitric oxide synthase in neonatal mouse cardiomyocytes. Cardiovasc Res 45:595–602

    Article  CAS  Google Scholar 

  • Sreejit P, Kumar S, Verma RS (2008) An improved protocol for primary culture of cardiomyocyte from neonatal mice. In Vitro Cell Dev Biol Anim 44:45–50

    Article  CAS  Google Scholar 

  • Tomanek RJ, Ratajska A, Kitten GT, Yue X, Sandra A (1999) Vascular endothelial growth factor expression coincides with coronary vasculogenesis and angiogenesis. Dev Dyn 215:54–61

    Article  CAS  Google Scholar 

  • van Laake LW, Passier R, Doevendans PA, Mummery CL (2008) Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ Res 102:1008–1010

    Article  Google Scholar 

  • Wang GW, Kang YJ (1999) Inhibition of doxorubicin toxicity in cultured neonatal mouse cardiomyocytes with elevated metallothionein levels. J Pharmacol Exp Ther 288:938–944

    CAS  Google Scholar 

  • Wright JW, Pejovic T, Fanton J, Stouffer RL (2008) Induction of proliferation in the primate ovarian surface epithelium in vivo. Hum Reprod 23:129–138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Development of this protocol would not have been possible without correspondence with Dr. Joe Bahl. We would also like to acknowledge Dr. Earl N. Myer for inspiration on this topic. Funding was provided by HBLI 077493 (T.D.C) AND T32-HL07249 (L.S.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurel S. Rodgers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodgers, L.S., Schnurr, D.C., Broka, D. et al. An improved protocol for the isolation and cultivation of embryonic mouse myocytes. Cytotechnology 59, 93–102 (2009). https://doi.org/10.1007/s10616-009-9197-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-009-9197-9

Keywords

Navigation