Advertisement

Cytotechnology

, Volume 59, Issue 1, pp 11–16 | Cite as

Formation of embryoid bodies from mouse embryonic stem cells cultured on silicon-coated surfaces

  • Fardin FathiEmail author
  • Taki Altiraihi
  • Seyed Javad Mowla
  • Mansoreh Movahedin
Technical Note

Abstract

Embryoid bodies (EBs) are primitive embryonic structures derived from differentiating embryonic stem cells (ESCs). Many techniques have been used to obtain EBs. Improving the technique of EB formation can help in achieving better results in ESCs differentiation into neurons, myocardiocytes, haemopoeitic cells, and others. We evaluated the use of Sigmacote™ as a hydrophobic substrate to improve EB formation. CCE and P19 cell lines were used to obtain EBs and retinoic acid was used to induce neural differentiation. The results revealed that Sigmacote™, as a hydrophobic substrate, can improve EB formation from ESCs. Our results demonstrate that the silicon-coating of glass petri dishes by Sigmacote™ is an easy and reproducible technique to enhance EB formation from murine ESCs and EC cells.

Keywords

Embryoid body Hydrophobic substrate Sigmacote P19 cell line CCE cell line 

References

  1. Bain G, Kitchenes D, Yao M et al (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 163:342–357. doi: 10.1006/dbio.1995.1085 CrossRefGoogle Scholar
  2. Bjorklund LM, Sanchez-Pernaute R, Chung S et al (2002) Embryonic cells develops in to functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 99:2344–2349. doi: 10.1073/pnas.022438099 CrossRefGoogle Scholar
  3. Brustle O, Jones KN, Learish RD et al (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285:754–756. doi: 10.1126/science.285.5428.754 CrossRefGoogle Scholar
  4. Chung S, Sonntag KC, Andersson T et al (2002) Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. Eur J Neurosci 16:1829–1838CrossRefGoogle Scholar
  5. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotent cells from mouse embryos. Nature 292:154–156. doi: 10.1038/292154a0 CrossRefGoogle Scholar
  6. Gottlieb DI, Huettner JE (1999) An in vitro pathway from embryonic stem cells to neurons and glia. Cells Tissues Organs 165:165–172. doi: 10.1159/000016696 CrossRefGoogle Scholar
  7. Hirashima M, Kataoka H, Nishikawa S et al (1999) Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis. Blood 93:1253–1263Google Scholar
  8. Johkura K, Cui L, Suzuki A et al (2003) Survival and function of mouse embryonic stem cell-derived cardiomyocytes in ectopic transplants. Cardiovasc Res 58:435–443. doi: 10.1016/S0008-6363(02)00730-7 CrossRefGoogle Scholar
  9. Jones-Villeneuve EM, McBurney MW, Rogers KA, Kalnins VI (1982) Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J Cell Biol 94:253–262CrossRefGoogle Scholar
  10. Keller GM (1995) In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 7:862–869CrossRefGoogle Scholar
  11. Keller G, Kennedy M, Papayannopoulou T et al (1993) Hematopoietic commitment during embryonic stem cells differentiation in culture. Mol Cell Biol 13:473–486Google Scholar
  12. Koike M, Kurosawa H, Amano YA (2005) Round-bottom 96-well polystyrene plate coated with 2-methacryloyloxyethyl phosphorylcholine as an effective tool for embryoid body formation. Cytotechnology 47:3–10CrossRefGoogle Scholar
  13. Konno T, Akita K, Kurita K et al (2005) Formation of embryoid bodies by mouse embryonic stem cells on plastic surfaces. J Biosci Bioeng 100:88–93CrossRefGoogle Scholar
  14. Kurosawa H, Imamura T, Koike M et al (2003) A Simple method for forming embryoid body from mouse embryonic stem cells. J Biosci Bioeng 96:409–411Google Scholar
  15. Liu S, Qu Y, Stewart TJ et al (2000) Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci USA 97:6126–6131CrossRefGoogle Scholar
  16. Lumelsky N, Blondel O, Laeng P et al (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394CrossRefGoogle Scholar
  17. Maltsev VA, Wobus AM, Rohvedel J et al (1994) Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ Res 75:233–244Google Scholar
  18. McBurney MW (1993) P19 embryonal carcinoma cells. Int J Dev Biol 37:135–140Google Scholar
  19. McBurney MW, Jones-Villeneuve EM, Edwards MK et al (1982) Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line. Nature 299:165–167CrossRefGoogle Scholar
  20. Nishikawa S, Nishikawa S, Hirashima M et al (1998) Progressive lineage analysis by cell sorting and culture identifies FLK1+ VEcadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 125:1747–1757Google Scholar
  21. Park S, Lee YJ, Lee KS et al (2004) Establishment of human Embryonic Stem cell lines from frozen-thawed blastocysts using STO cell feeder layers. Hum Reprod 9:676–684CrossRefGoogle Scholar
  22. Robertson EJ (1987) Teratocarcinomas and embryonic stem cells: a practical approach. Oxford, Washington DCGoogle Scholar
  23. Robertson E, Bradley A, Kuehn M (1986) Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323:445–448CrossRefGoogle Scholar
  24. Skerjanc IS (1999) Cardiac and skeletal muscle development in P19 embryonal carcinoma cells. Trends Cardiovasc Med 9:139–143CrossRefGoogle Scholar
  25. Soria B, Roche E, Berná G et al (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49:157–162CrossRefGoogle Scholar
  26. Stephen MD, Kybe M, Perlingeiro R et al (2002) Effeicency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol Bioeng 78:442–453CrossRefGoogle Scholar
  27. Thomson JA, Kalishman J, Golos TG et al (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 92:7844–7848CrossRefGoogle Scholar
  28. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRefGoogle Scholar
  29. Van der Heyden MA, Defize LH (2003) Twenty-one years of P19 cells: what an embryonal carcinoma cell line taught us about cardiomyocyte differentiation. Cardiovasc Res 58:292–302CrossRefGoogle Scholar
  30. Wang X, Wei G, Weiting Yu et al (2006) Scalable producing embryoid bodies by rotary cell culture system and constructing engineered cardiac tissue with es-derived cardiomyocytes in vitro. Biotechnol Prog 22:811–818CrossRefGoogle Scholar
  31. Xian H, McNichols E, Clair AS et al (2003) A subset of ES-cell-derived neural cells marked by gene targeting. Stem Cells 21:41–49CrossRefGoogle Scholar
  32. Yamada T, Yoshikawa M, Kanda S et al (2002) In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells 20:146–154CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Fardin Fathi
    • 1
    Email author
  • Taki Altiraihi
    • 2
  • Seyed Javad Mowla
    • 3
  • Mansoreh Movahedin
    • 2
  1. 1.Department of Anatomy, KDRC, Faculty of MedicineKurdistan University of Medical SciencesSanandajIran
  2. 2.Department of Anatomy, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
  3. 3.Department of Genetics, Faculty of Basic SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations