Skip to main content
Log in

Highly passage of Spodoptera litura cell line causes its permissiveness to baculovirus infection

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

It is well known that the characteristics of cell lines possibly alter when cell lines are at high-passage number because of the environmental selection. We do not know whether non-permissive or low-permissive cell lines could become permissive or more permissive to virus infection after over-high passage. In the present studies, the alteration of the permissiveness of Spodoptera litura cell line Sl-zsu-1 to three baculovirus infection was investigated after over-high passage, and the possible mechanisms are also investigated. Vigorous apoptosis in Sl-zsu-1 cells was induced by both the recombinant Autographa californica multiple nucleopolyhedrovirus AcMNPV-GFP-actin and the celery looper Anagrapha falcifera multiple nucleopolyhedrovirus AfMNPV, suggesting the replication of the two viruses was blocked by apoptosis. However, the cells infected by S. litura multicapsid nucleopolyhedrovirus SpltMNPV did not undergo apoptosis, but the SpltMNPV titre of the supernatant was not detectable, suggesting this cell line was low-permissive for this virus infection and other factor(s) involved in blockage of the virus replication except apoptosis. However, when Sl-zsu-1 cells had been subcultured continuously for more than 4 years (high-passage cell), which was named as Sl-HP cell line afterwards, no significant apoptosis was induced by the three baculovirus in Sl-HP cells, and many replicated virions or nucleocapsids were observed in the cells. But the permissiveness of Sl-HP cells to the three viruses was very different according to the titre of viruses in the cell cultures. Interestingly, the DNA extracted from SpltMNPV could induce vigorous apoptosis of Sl-HP cells. Altogether, Sl-zsu-1 cell line becomes more permissive to baculovirus infection after over-high passage and multiple paths can block the baculovirus infectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SpltMNPV:

Spodoptera litura nucleopolyhedrovirus

AfMNPV:

Anagrapha falcifera multiple nucleopolyhedrosis virus

AcMNPV:

Autographa californica multiple nucleopolyhedrovirus

AcMNPV-GFP-actin:

A recombinant Autographa californica multiple nucleopolyhedrovirus with a fused GFP-actin gene

References

  • Barros LF, Kanaseki T, Sabirov R et al (2003) Apoptotic and necrotic blebs in epithelial cells display similar neck diameters but different kinase dependency. Cell Death Differ 10(6):687–697. doi:10.1038/sj.cdd.4401236

    Article  CAS  Google Scholar 

  • Briske-Anderson MJ, Finley JW, Newman SM (1997) Influence of culture time and passage number on morphological and physiological development of Caco-2 cells. Proc Soc Exp Biol Med 214(3):248–257

    CAS  Google Scholar 

  • Calles K, Svensson I, Lindskog E et al (2006) Effects of conditioned medium factors and passage number on Sf9 cell physiology and productivity. Biotechnol Prog 22(2):394–400. doi:10.1021/bp050297a

    Article  CAS  Google Scholar 

  • Chang S, Sun H, Li Z (1998) Effect of temperature oscillation on insect cell growth and baculovirus replication. Appl Environ Microbiol 64(6):2237–2239

    CAS  Google Scholar 

  • Clemm DL (1992) Scale-up of protein production in a stirred bioreactor. In: O’Reilly DR, Miller LK, Luckow VA (eds) Baculovirus expression vectors: a laboratory manual. W. H. Freeman, New York, pp 241–248

    Google Scholar 

  • Dai XJ, Pang Y, Nong G et al (1998) Is baculovirus gp64 gene a primary factor inducing apoptosis of insect cells? Acta Sci Natur Univ Sunyatseni 37(3):7–12 In Chinese

    CAS  Google Scholar 

  • Deschesnes RG, Huot J, Valerie K et al (2001) Involvement of p38 in apoptosis-associated membrane blebbing and nuclear condensation. Mol Biol Cell 12(6):1569–1582

    CAS  Google Scholar 

  • Donaldson MS, Shuler ML (1998) Effects on long-term passaging of BTI-Tn5B1-4 insect cells on growth and recombinant protein production. Biotechnol Prog 14(4):543–547. doi:10.1021/bp9800485

    Article  CAS  Google Scholar 

  • Feng G, Yu Q, Hu C et al (2007) Apoptosis is induced in the haemolymph and fat body of Spodoptera exigua larvae upon oral inoculation with Spodoptera litura nucleopolyhedrovirus. J Gen Virol 88:2185–2193. doi:10.1099/vir.0.82919-0

    Article  CAS  Google Scholar 

  • Hirata H, Hibasami H, Yoshida T et al (1998) Differentiation and apoptosis without DNA fragmentation in cultured Schwann cells derived from wallerian-degenerated nerve. Apoptosis 3(5):353–360. doi:10.1023/A:1009633205444

    Article  CAS  Google Scholar 

  • Inbal B, Bialik S, Sabanay I et al (2002) DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biochem 157(3):455–468

    CAS  Google Scholar 

  • Jia Y, Yu Z, Chen X (2005) Actin and production of AcMNPV polyhedra. Prog Biochem Biophys 32(9):829–834

    CAS  Google Scholar 

  • Joosten CE, Shuler ML (2003) Effect of culture conditions on the degree of sialylation of a recombinant glycoprotein expressed in insect cells. Biotechnol Prog 19(3):739–749. doi:10.1021/bp0201049

    Article  CAS  Google Scholar 

  • Knudson DL, Tinsley TW (1974) Replication of a nuclear polyhedrosis virus in a continuous cell culture of Spodoptera frugiperda: purification, assay of infectivity, and growth characteristics of the virus. J Virol 14(4):934–944

    CAS  Google Scholar 

  • Li X, Zhou R, Jia Y et al (2004) Function of actin in transportation of the AcMNPV from nuclear to outside of cell. Virol Sin 19(6):630–635

    Google Scholar 

  • Liu K, Zheng J, Hong H et al (2005) Mechanisms for Bt toxin resistance and increased chemical pesticide susceptibility in Cry1Ac10-resistant cultured insect cells. Cytotechnology 49(2–3):153–160. doi:10.1007/s10616-006-6880-y

    Article  CAS  Google Scholar 

  • Liu L, Peng J, Liu K et al (2007a) Influence of cytochrome c on apoptosis induced by Anagrapha (Syngrapha) falcifera multiple nuclear polyhedrosis virus (AfMNPV) in insect Spodoptera litura cells. Cell Biol Int 31(9):996–1001. doi:10.1016/j.cellbi.2007.03.011

    Article  CAS  Google Scholar 

  • Liu K, Tang Q, Fu C et al (2007b) Influence of glucose starvation on the pathway of death in insect cell line Sl: apoptosis follows autophagy. Cytotechnology 54(2):97–105. doi:10.1007/s10616-007-9080-5

    Article  CAS  Google Scholar 

  • O’Reilly DR, Miller LK, Luckow VA (1992) Baculovirus expression vectors: a laboratory manual. W. H. Freeman & Company, New York

    Google Scholar 

  • Pang Y, Yu J, Wang L et al (2001) Sequence analysis of the Spodoptera litura multicapsid nucleopolyhedrovirus genome. Virology 287(2):391–404. doi:10.1006/viro.2001.1056

    Article  CAS  Google Scholar 

  • Park MT, Lee MS, Kim SH et al (2004) Influence of culture passages on growth kinetics and adenovirus vector production for gene therapy in monolayer and suspension cultures of HEK 293 cells. Appl Microbiol Biotechnol 65:553–558. doi:10.1007/s00253-004-1617-3

    Article  CAS  Google Scholar 

  • Peiser C, Riebe-Imre M, Emura M et al (1993) Influence of culture passages on growth kinetics, xenobiotic metabolism, chromosomal stability and transformation in a clonal fetal hamster lung epithelial cell line. Mutat Res 289(2):281–290. doi:10.1016/0027-5107(93)90079-U

    CAS  Google Scholar 

  • Rosser BG, Gores GJ (1995) Liver cell necrosis: cellular mechanisms and clinical implications. Gastroenterology 108(1):252–275. doi:10.1016/0016-5085(95)90032-2

    Article  CAS  Google Scholar 

  • Simon O, Williams T, Lopez-Ferber M et al (2004) Virus entry or the primary infection cycle are not the principal determinants of host specificity of Spodoptera spp. nucleopolyhedroviruses. J Gen Virol 85:2845–2855. doi:10.1099/vir.0.80179-0

    Article  CAS  Google Scholar 

  • Xie WD, Qu SR, Pang Y (1988) The establishment of an insect cell line from Spodoptera litura and the study of virus infection. Acta Sci Natur Univ Sunyatseni 45:113–116

    Google Scholar 

  • Xiu M, Peng J, Hong H (2005) Mitochondrial response and calcium ion change in apoptotic insect cells induced by SfaMNPV. Chin Sci Bull 50(12):1191–1198. doi:10.1360/04WC0275

    Article  CAS  Google Scholar 

  • Zhang P, Yang B, Dai X et al (2002) Apoptosis of Spodoptera litura cells induced by AcMNPV ie-1 gene. Acta Biochim Biophys Sin (Shanghai) 34(6):707–711

    CAS  Google Scholar 

  • Zheng TS, Schlosser SF, Dao T et al (1998) Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo. Proc Natl Acad Sci USA 95(23):13618–13623. doi:10.1073/pnas.95.23.13618

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This was supported by the Natural Science of Foundation of Hubei Province (Grant No: 2007ABA160), the National Natural Science Foundation of China (Grant No: 30470073) and the State Ministry of-Education College Students’ Innovative Projects (2007). Hong-Ye Zhang, Xin-Xue Cai and Yi-Chun Lin took part in some experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiyu Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Lan, W., Deng, Y. et al. Highly passage of Spodoptera litura cell line causes its permissiveness to baculovirus infection. Cytotechnology 57, 233–243 (2008). https://doi.org/10.1007/s10616-008-9158-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-008-9158-8

Keywords

Navigation