, 56:161 | Cite as

Development of primary cell culture from Scylla serrata

Primary cell cultures from Scylla serrata


This paper reports for the first time, the Primary cell culture of hepatopancreas from edible crab Scylla serrata using crab saline, L-15 (Leibovitz), 1 × L-15 + crab saline, 2 × L-15 + crab saline, 3 × L-15 and citrate buffer without any serum. We could isolate and maintain E (Embryonalzellen), F (Fibrenzellen), B (Blasenzellen), R (Restzellen) and G (Granular cells). Upon seeding the hepatopancreatic E, F, B, and R cells showed different survival pattern over time than granular cells. A modified L-15 (3×) medium supported the best survival of hepatopancreatic E, F B, and R cells in in-vitro culture. However granular cells could be maintained for 184 days with L-15 (1×) + crab saline. Fetal bovine serum was not effective additive and hampered cell viability in present study.


Hepatopancreas Scylla serrata Primary cultures E (Embryonalzellen) F (Fibrenzellen) B (Blasenzellen) R (Restzellen) and G (Granular cells) 



The authors acknowledge the receipts of financial assistances from Department of Biotechnology, New Delhi under the project number BT/PR8029/AAQ/03/287/2006.


  1. Al-Mohanna SY, Nott JA (1985) Mitotic E-and secretory F-cells in the hepatopancreas of the shrimp Penaeus Semisulcatus (Crustacea: Decapoda). J mar Biol ASS UK 65:901–910CrossRefGoogle Scholar
  2. Al-Mohanna SY, Nott JA (1987) R-cells and the digestive cycle in Penaeus semisulcatus (Crustacean: Decapoda). Mar Biol (Berl) 95:129–137. doi: 10.1007/BF00447494 CrossRefGoogle Scholar
  3. Ballard TA, Roer RD, Dillaman RM (1993) Long-term culture of integumental explants from premolt blue crabs, Callinectes sapidus. J Tissue Cult Methods 15:11–14. doi: 10.1007/BF02387283 CrossRefGoogle Scholar
  4. Chen S-N, Chi S-C, Kou G-H, Liao IC (1986) Cell cultures from tissues of Grass Prawn, Penaeus monodon. Fish Pathol 21:161–166Google Scholar
  5. Chen S-N, Shih H-H, Kou G-H (1995) Primary cell cultures from tissues of penaeid shrimps and their susceptibilities to monodon-type baculovirus (MBV). Rep Fish Dis Res 16:1–14Google Scholar
  6. Chen SN, Wen CM (1999) Establishment of cell lines derived from oyster, Crassostrea gigas Thunberg and hard clam, Meretrix lusoria Roding. Methods Cell Sci 21:183–192. doi: 10.1023/A:1009829807954 CrossRefGoogle Scholar
  7. Frerichs GN (1996) In vitro culture of embryonic cells from the freshwater prawn Macrobrachium rosenbergii. Aquaculture 143:227–232. doi: 10.1016/0044-8486(96)01281-1 CrossRefGoogle Scholar
  8. Hsu Y-L, Yang Y-H, Chen Y-C, Tung M-C, Wu J-L, Engelking MH et al (1995) Development of an in vitro subculture system for prawn tissues. Asian Fish Soc Spec Pub 10:161–170Google Scholar
  9. Icely JD, Nott JA (1992) Digestion and absorption: digestive system and associated organs. In: Harrison FW, Humes AG (eds) Microscopic anatomy of invertebrates, vol 10. Decapod crustacea, Wiley-Liss, New York, pp 147–201Google Scholar
  10. Johnston DJ, Alexander CG, Yellowhees D (1998) Epithelial cytology and function in the digestive gland of Thenus orientalis (Decapoda, scyllaridae). J Crust Biol 18(12):271–278. doi: 10.2307/1549320 CrossRefGoogle Scholar
  11. Ke H, Liping W, Yumei D, Shuji Z (1990) Studies on cell culture from the hepato-pancreas of the oriental shrimp, Penaeus orientalis Kishinouye. Asian Fish Sci 3:299–307Google Scholar
  12. Klinbunga S, Boonyapakdee A, Pratoomchat B (2000) Genetic diversity and species-diagnostic markers of mud crabs (Genus Scylla) in Eastern Thailand determined by RAPD analysis. Mar Biotechnol 2:180–187Google Scholar
  13. Luedeman RA (1990) Development of an in vitro primary cell cultures from the penaeid shrimp Penaeus stylirostris and Penaeus vannamei and evaluation of a potential application. Masters Thesis. The University of Arizona, Tucson, AZGoogle Scholar
  14. Mulford AL, Austin B (1998) Development of primary cell cultures from Nephrops norvegicus. Methods Cell Sci 19:269–275. doi: 10.1023/A:1009787223797 CrossRefGoogle Scholar
  15. Mulford AL, Lyng F, Mothersill C, Austin B (2001) Development and characterization of primary cell cultures from the hematopoietic tissues of the Dublin Bay prawn, Nephrops norvegicus. Methods Cell Sci 22:265–275. doi: 10.1023/A:1017971618398 CrossRefGoogle Scholar
  16. Nadala EC, Lu Y, Loh PC (1993) Primary culture of lymphoid, nerve and ovary cells from Penaeus stylirostris and Penaeus vannamei. In Vitro Cell Dev Biol Anim 29A:620–622. doi: 10.1007/BF02634546 CrossRefGoogle Scholar
  17. Leigh Owens, Jan Smith (1999) Early attempts at production of prawn cell lines. Methods Cell Sci 21:207–211. doi: 10.1023/A:1009806606562 CrossRefGoogle Scholar
  18. Peponnet F, Quiol JM (1971) Cell cultures of crustacea Arachnida and merostomacea. In: Vago C (ed) Invertebrate tissue culture. vol I pp 341–359Google Scholar
  19. Rosenthal J, Diamant A (1990) In vitro primary cell culture from penaeus semisulcatus. In: perkins FO, Cheng TC (eds) Pathology in Marine Science. Academic Press, San Diego, pp 7–13Google Scholar
  20. Sousa LG, Elena I, Cuartas , Petriella AM (2005) Fine structural analysis of the epithelial cells in the hepatopancreas of Palaemonetes argentinus (Crustacea, Decapoda, Caridea) in intermoult. Biocell 29(1):25–31Google Scholar
  21. Tong S-L, Miao H-Z (1996) Attempts to initiate cell cultures from Penaeus chinensis tissues. Aquaculture 147:151–157. doi: 10.1016/S0044-8486(96)01386-5 CrossRefGoogle Scholar
  22. Toullec J-Y, Crozat Y, Patrois J, Porcheron P (1996) Development of primary cell cultures from the penaeid shrimps Penaeus vannamei and P. indicus. J Crust Biol 16:643–649. doi: 10.2307/1549183 CrossRefGoogle Scholar
  23. Uma A, Prabhakar TG, Koteeswaran A, Ravikumar G (2002) Establishment of primary cell culture from hepatopancreas of Penaeus monodon for the study of whitespot syndrome virus (WSSV). Asian Fish Sci 15:365–370Google Scholar
  24. Zilli L, Schiavone R, Scordella G, Zonno V, Verri T, Storelli C et al (2003) Changes in cell type composition and enzymatic activities in the hepatopancreas of Marsupenaeus japonicus during the moulting cycle. J Comp Physiol [B] 173:355–363. doi: 10.1007/s00360-003-0348-6 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of zoologyGoa UniversityTaleigao plateauIndia

Personalised recommendations