Skip to main content

Advertisement

Log in

Cephalic hedgehog expression is regulated directly by Sox17 in endoderm development of Xenopus laevis

  • JAACT Special Issue
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

In early development of animals, hedgehog (Hh) genes function as morphogen in the axis determination and the organ formation. In Xenopus, three hedgehog genes, sonic (shh), banded (bhh), and cephalic (chh), were identified and might organize various tissues and organs in embryogenesis. Here, we report the spatial and temporal regulation of Xchh which is expressed in endoderm cells differentiating to digestive organs. Xchh expression in endoderm was inhibited by ectopic expression of the dominant-negative activin receptor, tAR. Moreover, a maternally inherited transcription factor VegT and its downstream regulators activated Xchh expression. These indicates that Xchh is regulated by the factor involved in the cascade originated from VegT via activin/nodal signals. Using the Sox17α-VP16-GR construct, we showed that Xchh expression might be induced directly by transcription factor Sox17.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

bFGF:

basic fibroblast growth factor

BMP:

bone morphogenic protein

TGFβ:

transforming growth factor β

References

  • Afouda B, Ciau-Uitz A, Patient R (2005) GATA4, 5 and 6 mediate TGFbeta maintenance of endodermal gene expression in Xenopus embryos. Development 132:763–774

    Article  CAS  Google Scholar 

  • Amaya E, Musci TJ, Kiescner MW (1991) Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66:257–270

    Article  CAS  Google Scholar 

  • Asashima M, Uchiyama H, Nakano H, Eto Y, Ejima D, Sugino H, Davids M, Plessow S, Born J, Hoppe P, Tiedemann H, Tiedemann N (1991) The vegetalizing factor from chicken embryos: its EDF (activin A)-like activity. Mech Dev 34:135–141

    Article  CAS  Google Scholar 

  • Bartkowski S, Zapp D, Weber H, Eberle G, Zoidl C, Senkel S, Clein-Hitpass L, Ryffel GU (1993) Developmental regulation and tissue distribution of the liver transcription factor LFB1 (HNF1) in Xenopus laevis. Mol Cell Biol 13:421–431

    CAS  Google Scholar 

  • Casey ES, Tada M, Fairclough L, Wylie CC, Heasman J, Smith JC (1999) Bix4 is activated directly by VegT and mediates endoderm formation in Xenopus development. Development 126:4193–4200

    CAS  Google Scholar 

  • Clements D, Cameleyre I, Woodland HR (2003) Redundant early and overlapping larval roles of Xsox17 subgroup genes in Xenopus endoderm development. Mech Dev 120:337–348

    Article  CAS  Google Scholar 

  • Clements D, Friday RV, Woodland HR (1999) Mode of action of VegT in mesoderm and endoderm formation. Development 126:4903–4911

    CAS  Google Scholar 

  • Clements D, Woodland HR (2003) VegT induces endoderm by a self-limiting mechanism and by changing the competence of cells to respond to TGF-beta signals. Dev Biol 258:454–463

    Article  CAS  Google Scholar 

  • Demartis A, Maffei M, Vignali R, Barsacchi G, De Simone V (1994) Cloning and developmental expression of LFB3/HNF1 beta transcription factor in Xenopus laevis. Mech Dev 47:19–28

    Article  CAS  Google Scholar 

  • Dohrmann CE, Hemmati-Brivanlou A, Thomsen GH, Fields A, Woolf TM, Melton DA (1993) Expression of activin mRNA during early development in Xenopus laevis. Dev Biol 157:474–483

    Article  CAS  Google Scholar 

  • Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75:1417–1430

    Article  CAS  Google Scholar 

  • Ecochard V, Cayrol C, Rey S, Foulquier F, Caillol D, Lemaire P, Duprat AM (1998) A novel Xenopus mix-like gene milk involved in the control of the endomesodermal fates. Development 125:2577–2585

    CAS  Google Scholar 

  • Ekker SC, McGrew LL, Lai CJ, Lee JJ, Von Kessler DP, Moon RT, Beachy PA (1995) Distinct expression and shared activities of members of the hedgehog gene family of Xenopus laevis. Development 121:2337–2347

    CAS  Google Scholar 

  • Engleka MJ, Craig EJ, Kessler DS (2001) VegT activation of Sox17 at the midblastula transition alters the response to Nodal signals in the vegetal endoderm domain. Dev Biol 237:159–172

    Article  CAS  Google Scholar 

  • Fan CM, Tessier-Lavigne M (1994) Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell 79:1175–1186

    Article  CAS  Google Scholar 

  • Hammerschmidt M, Brook A, McMahon AP (1997) The world according to hedgehog. Trends Genet 13:14–21

    Article  CAS  Google Scholar 

  • Harland RM (1991) In situ hybridazation: an improved whole-mount method for Xenopus embryos. Methods Cell Biol 36:685–695

    Article  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Melton DA (1992) A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359:609–614

    Article  CAS  Google Scholar 

  • Henry GL, Melton DA (1998) Mixer, a homeobox gene required for endoderm development. Science 281:91–96

    Article  CAS  Google Scholar 

  • Hudson C, Clements D, Friday RV, Stott D, Woodland HR (1997) Xsox17alpha and -beta mediate endoderm formation in Xenopus. Cell 91:397–405

    Article  CAS  Google Scholar 

  • Ito Y, Kuhara S, Tashiro K (2001) In synergy with noggin and follistatin, Xenopus nodal-related gene induces sonic hedgehog on notochord and floor plate. Biochem Biophys Res Com 281:714–719

    Article  CAS  Google Scholar 

  • Jiang Y, Evans T (1996) The Xenopus GATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis. Dev Biol 174:258–270

    Article  CAS  Google Scholar 

  • Jones EA, Abel MH, Woodland HR (1993) The possible role of mesodermal growth factors in the formation of endoderm in Xenopus laevis. Roux’s Arch Dev Biol 202:233–239

    Article  CAS  Google Scholar 

  • Joseph EM, Melton DA (1997) Xnr4: A Xenopus nodal-related gene expressed in the Spemann organizer. Dev Biol 184:367–372

    Article  CAS  Google Scholar 

  • Kelley C, Blumberg H, Zon LI, Evans T (1993) GATA-4 is a novel transcription factor expressed in endocardium of the developing heart. Development 118:817–827

    CAS  Google Scholar 

  • Krauss S, Concordet JP, Ingham PW (1993) A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75:1431–1444

    Article  CAS  Google Scholar 

  • Lemaire P, Darras S, Caillol D, Kodjabachian L (1998) A role for the vegetally expressed Xenopus gene Mix.1 in endoderm formation and in the restriction of mesoderm to the marginal zone. Development 125:2371–2380

    CAS  Google Scholar 

  • Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). Elsevier North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  Google Scholar 

  • Peng HB (1991) Xenopus laevis: Practical uses in cell and molecular biology. Solutions and protocols. Methods i Cell Biol 36:657–662

    Article  CAS  Google Scholar 

  • Roelink H, Augsburger A, Heemskerk J, Korzh V, Norlin S, Ruiz i Altaba A, Tanabe Y, Placzek M, Edlund T, Jessell TM, Dodd J (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76:761–775

    Article  CAS  Google Scholar 

  • Rosa F (1989) Mix.1, a homeobox mRNA inducible by mesoderm inducers, is expressed mostly in the presumptive endodermal cells of Xenopus embryos. Cell 57:965–974

    Article  CAS  Google Scholar 

  • Sasai Y, Lu B, Piccolo S, De Robertis E (1996) Endoderm induction by the organizer-secreted factors chordin and noggin in Xenopus animal caps. EMBO J 15:4547–4555

    CAS  Google Scholar 

  • Shi YBO, Hayes WP (1994) Thyroid hormone-dependent regulation of the intestinal fatty acid-binding protein gene during amphibian metamorphosis. Dev Biol 161:48–58

    Article  Google Scholar 

  • Sinner D, Rankin S, Lee M, Zorn AM (2004) Sox17 and β-catenin cooperate to regulate the transcription of endodermal genes. Development 131:3069–3080

    Article  CAS  Google Scholar 

  • Sive HL (2000) Early Development of Xenopus Laevis Cold Spring Harbor Laboratory Press

  • Sun BI, Bush SM, Collins-Racie LA, LaVallie ER, DiBlasio-Smith E A, Wolfman NM, McCoy JM, Sive HL (1999) derrière: a TGF-b family member required for posterior development in Xenopus. Development 126:1467–1482

    CAS  Google Scholar 

  • Suzuki A, Ties RS, Yamaji N, Song JJ, Wonzney JM, Murakami K, Ueno N (1994) A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc Natl Acad Sci USA 91:10255–10259

    Article  CAS  Google Scholar 

  • Tada M, Casey E, Fairclough L, Smith J (1998) Bix1, a direct target of Xenopus T-box genes, causes formation of ventral mesoderm and endoderm. Development 125:3997–4006

    CAS  Google Scholar 

  • Takahashi S, Yokota C, Takano K, Tanegashima K, Onuma Y, Goto J, Asashima M (2000) Two novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center. Development 127:5319–5329

    CAS  Google Scholar 

  • Thomsen GH, Melton DA (1993) Processed Vg1 is an axial mesoderm inducer in xenopus. Cell 74:433–441

    Article  CAS  Google Scholar 

  • Vize PD (1996) DNA sequences mediating the transcriptional response of the Mix.2 homeobox gene to mesoderm induction. Dev Biol 177:226–231

    Article  CAS  Google Scholar 

  • Weber H, Symes C, Walmsley M, Rodaway A, Patient R (2000) A role for GATA5 in Xenopus endoderm specification. Development 127:4345–4360

    CAS  Google Scholar 

  • Wright C, Schnegelsberg P, De Robertis E (1989) XlHbox 8: a novel Xenopus homeo protein restricted to a narrow band of endoderm. Development 105:787–794

    CAS  Google Scholar 

  • Xanthos JB, Kofron M, Wylie C, Heasman J (2001) Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis. Development 128:167–180

    CAS  Google Scholar 

  • Yisraeli JK, Melton DA (1988) The material mRNA Vg1 is correctly localized following injection into Xenopus oocytes. Nature 336:592–595

    Article  CAS  Google Scholar 

  • Zhang C, Basta T, Fawcett SR, Klymkowsky MW (2005a) SOX7 is an immediate-early target of VegT and regulates Nodal-related gene expression in Xenopus. Dev Biol 278:526–541

    Article  CAS  Google Scholar 

  • Zhang C, Basta T, Jensen E, Klymkowsky M (2003) The beta-catenin/VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation. Development 130:5609–5624

    Article  CAS  Google Scholar 

  • Zhang C, Basta T, Klymkowsky M (2005b) SOX7 and SOX18 are essential for cardiogenesis in Xenopus. Dev Dyn 234:878–891

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Tashiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yagi, Y., Ito, Y., Kuhara, S. et al. Cephalic hedgehog expression is regulated directly by Sox17 in endoderm development of Xenopus laevis . Cytotechnology 57, 151–159 (2008). https://doi.org/10.1007/s10616-008-9127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-008-9127-2

Keywords

Navigation