Advertisement

Cytotechnology

, Volume 57, Issue 1, pp 1–9 | Cite as

A role for Drosophila in understanding drug-induced cytotoxicity and teratogenesis

  • Joslynn G. Affleck
  • Virginia K. Walker
SI: Heterologous Gene Expression

Abstract

Drosophila research has been and continues to be an essential tool for many aspects of biological scientific research and has provided insight into numerous genetic, biochemical, and behavioral processes. As well, due to the remarkable conservation of gene function between Drosophila and humans, and the easy ability to manipulate these genes in a whole organism, Drosophila research has proven critical for studying human disease and the physiological response to chemical reagents. Methotrexate, a widely prescribed pharmaceutical which inhibits dihydrofolate reductase and therefore folate metabolism, is known to cause teratogenic effects in human fetuses. Recently, there has been resurgence in the use of methotrexate for inflammatory diseases and ectopic or unwanted pregnancies thus, increasing the need to fully understand the cytotoxicity of this pharmaceutical. Concerns have been raised over the ethics of studying teratogenic drugs like methotrexate in mammalian systems and thus, we have proposed a Drosophila model. We have shown that exposure of female Drosophila to methotrexate results in progeny with developmental abnormalities. We have also shown that methotrexate exposure changes the abundance of many fundamental cellular transcripts. Expression of a dihydrofolate reductase with a reduced affinity for methotrexate can not only prevent much of the abnormal transcript profile but the teratogenesis seen after drug treatment. In the future, such studies may generate useful tools for mammalian antifolate “rescue” therapies.

Keywords

Dihydrofolate reductase Drosophila homolog Methotrexate Resistance Teratogenesis Transgenics 

Abbreviations

CHO

Chinese hamster ovary

DHF

dihydrofolate

DHFR

dihydrofolate reductase

MTX

methotrexate

THF

tetrahydrofolate

SAM

S-adenosylmethionine

UAS

upstream activating sequence

Notes

Acknowledgements

Natural Sciences and Engineering Research Council of Canada (NSERC) is acknowledged for scholarship and grant support to the authors.

References

  1. Adam MP, Manning MA, Beck AE, Kwan A, Enns GM, Clericuzio C, Hoyme HE (2003) Methotrexate/misoprostol embryopathy: report of four cases resulting from failed medical abortion. Am J Med Genet A 123:72–78CrossRefGoogle Scholar
  2. Affleck JG, Al-Batayneh KM, Neumann K, Cole SP, Walker VK (2006) Drosophila dihydrofolate reductase mutations confer resistance to mammalian cells. Eur J Pharmacol 529:71–78CrossRefGoogle Scholar
  3. Affleck JG, Neumann K, Wong L, Walker VK (2006) The effects of methotrexate on Drosophila development, female fecundity, and gene expression. Toxicol Sci 89:495–503CrossRefGoogle Scholar
  4. Affleck JG, Walker VK (2007) Transgenic rescue of methotrexate-induced teratogenicity in Drosophila melanogaster. Toxicol Sci 99:522–531CrossRefGoogle Scholar
  5. Appleman JR, Prendergast N, Delcamp TJ, Freisheim JH, Blakley RL (1988) Kinetics of the formation and isomerization of methotrexate complexes of recombinant human dihydrofolate reductase. J Biol Chem 263:10304–10413Google Scholar
  6. Brachat A, Pierrat B, Xynos A, Brecht K, Simonen M, Brungger A, Heim J (2002) A microarray-based, integrated approach to identify novel regulators of cancer drug response and apoptosis. Oncogene 21:8361–8371CrossRefGoogle Scholar
  7. Brzezinska A, Winska P, Balinska M (2000) Cellular aspects of folate and antifolate membrane transport. Acta Biochim Pol 47:735–749Google Scholar
  8. Chen MJ, Shimada T, Moulton AD, Cline A, Humphries RK, Maizel J, Nienhuis AW (1984) The functional human dihydrofolate reductase gene. J Biol Chem 259:3933–3943Google Scholar
  9. Cody V, Luft JR, Pangborn W (2005) Understanding the role of Leu22 variants in methotrexate resistance: comparison of wild-type and Leu22Arg variant mouse and human dihydrofolate reductase ternary crystal complexes with methotrexate and NADPH. Acta Crystallogr D Biol Crystallogr 61:147–155CrossRefGoogle Scholar
  10. Crosby MA, Goodman JL, Strelets VB, Zhang P, Gelbart WM, FlyBase Consortium (2007) FlyBase: genomes by the dozen. Nucleic Acids Res 35:D486–D491CrossRefGoogle Scholar
  11. Dadd RH (1973) Insect nutrition: current developments and metabolic implications. Annu Rev Entomol 18:381–420CrossRefGoogle Scholar
  12. Darab DJ, Minkoff R, Sciote J, Sulik KK (1987) Pathogenesis of median facial clefts in mice treated with methotrexate. Teratology 36:77–86CrossRefGoogle Scholar
  13. DeSesso JM, Goeringer GC (1991) Amelioration by leucovorin of methotrexate developmental toxicity in rabbits. Teratology 43:201–215CrossRefGoogle Scholar
  14. Dicker AP, Volkenandt M, Bertino JR (1989) Detection of a single base mutation in the human dihydrofolate reductase gene from a methotrexate-resistant cell line using the polymerase chain reaction. Cancer Commun 1:7–12Google Scholar
  15. Fairfield KM, Fletcher RH (2002) Vitamins for chronic disease prevention in adults: scientific review. J Amer Med Assoc 287:3116–3126CrossRefGoogle Scholar
  16. Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398CrossRefGoogle Scholar
  17. Fernandez H, Yves VSC, Pauthier S, Audibert F, Frydman R (1998) Randomized trial of conservative laparoscopic treatment and methotrexate administration in ectopic pregnancy and subsequent fertility. Human Repro 13:3239–3243CrossRefGoogle Scholar
  18. Fernandez R, Tabarini D, Azpiazu N, Frasch M, Schlessinger J (1995) The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. EMBO J 14:3373–3384Google Scholar
  19. Fernandez-Ballart J, Murphy MM (2001) Preventive nutritional supplementation through the reproductive life cycle. Public Health Nutr 4:1363–1366CrossRefGoogle Scholar
  20. Ganter B, Tugendreich S, Pearson CI, Ayanoglu E, Baumhueter S, Bostian KA, Brady L, Browne LJ, Calvin JT, Day GJ, Breckenridge N, Dunlea S, Eynon BP, Furness LM, Ferng J, Fielden MR, Fujimoto SY, Gong L, Hu C, Idury R, Judo MS, Kolaja KL, Lee MD, McSorley C, Minor JM, Nair RV, Natsoulis G, Nguyen P, Nicholson SM, Pham H, Roter AH, Sun D, Tan S, Thode S, Tolley AM, Vladimirova A, Yang J, Zhou Z, Jarnagin K (2005) Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. J Biotechnol 119:219–244CrossRefGoogle Scholar
  21. Gorlick R, Cole P, Banerjee D, Longo G, Li WW, Hochhauser D, Bertino JR (1999) Mechanisms of methotrexate resistance in acute leukemia. Decreased transport and polyglutamylation. Adv Exp Med Biol 457:543–550Google Scholar
  22. Goujon C, Berard F, Dahel K, Guillot I, Hennino A, Nosbaum A, Saad N, Nicolas JF (2006) Methotrexate for treatment of adult atopic dermatitis. Eur J Dermatol 16:155–158Google Scholar
  23. Hammes GG (2002) Multiple conformational changes in enzymes catalysis. Biochemistry 41:8221–8228CrossRefGoogle Scholar
  24. Hao H, Tyshenko MG, Walker VK (1994) Dihydrofolate reductase of Drosophila. Cloning and expression of a gene with a rare transcript. J Biol Chem 269:15179–15185Google Scholar
  25. Huang Q, Jin X, Gaillard ET, Knight BL, Pack FD, Stoltz JH, Jayadev S, Blanchard KT (2004) Gene expression profiling reveals multiple toxicity endpoints by hepatotoxicants. Mutat Res 549:147–167Google Scholar
  26. Huennekens FM (1994) The methotrexate story: a paradigm for development of cancer chemotherapeutic agents. Adv Enzyme Regul 34:397–419CrossRefGoogle Scholar
  27. Jarabak J, Bachur NR (1971) A soluble dihydrofolate reductase from human placenta: purification and properties. Arch Biochem Biophys 142:417–425CrossRefGoogle Scholar
  28. Jin S, Martinek S, Joo WS, Wortman JR, Mirkovic N, Sali A, Yandell MD, Pavletich NP, Young MW, Levine AJ (2000) Identification and characterization of a p53 homologue in Drosophila melanogaster. PNAS 97:7301–7306CrossRefGoogle Scholar
  29. Khera KS (1976) Teratogenicity studies with methotrexate, aminopterin, and acetylsalicylic acid in domestic cats. Teratology 14:21–27CrossRefGoogle Scholar
  30. King RC (1970) Ovarian development in Drosophila melanogaster. Academic Press, New YorkGoogle Scholar
  31. Kompis IM, Islam K, Then RL (2005) DNA and RNA synthesis: antifolates. Chem Rev 105:593–620CrossRefGoogle Scholar
  32. Lewden B, Vial T, Elefant E, Nelva A, Carlier P, Descotes J (2004) Low dose methotrexate in the first trimester of pregnancy: results of a French collaborative study. J Rheumatol 31:2360–2365Google Scholar
  33. Lloyd ME, Carr M, McElhatton P, Hall GM, Hughes RA (1999) The effects of methotrexate on pregnancy, fertility and lactation. Q J Med 92:551–563Google Scholar
  34. Malinow MR, Duell PB, Hess DL, Anderson PH, Kruger WD, Phillipson BE, Gluckman RA, Block PC, Upson BM (1998) Reduction of plasma homocyst(e)ine levels by breakfast cereal fortified with folic acid in patients with coronary heart disease. N Engl J Med 338:1009–1015CrossRefGoogle Scholar
  35. May C, Gunther R, McIvor RS (1995) Protection of mice from lethal doses of methotrexate by transplantation with transgenic marrow expressing drug-resistant dihydrofolate reductase activity. Blood 86:2439–2348Google Scholar
  36. McGuire JJ (2003) Anticancer antifolates: Current status and future directions. Curr Pharm Design 9:2593–2613CrossRefGoogle Scholar
  37. McKay JA, Williams EA, Mathers JC (2004) Folate and DNA methylation during in utero development and aging. Biochem Soc Trans 32:1006–1007CrossRefGoogle Scholar
  38. Meisel R, Bardenheuer W, Strehblow C, Sorg UR, Elmaagacli A, Seeber S, Flasshove M, Moritz T (2003) Efficient protection from methotrexate toxicity and selection of transduced human hematopoietic cells following gene transfer of dihydrofolate reductase mutants. Exp Hematol 31:1215–1222CrossRefGoogle Scholar
  39. Nakazawa F, Matsuno H, Yudoh K, Katayama R, Sawai T, Uzuki M, Kimura T (2001) Methotrexate inhibits rheumatoid synovitis by inducing apoptosis. J Rheumatol 28:1800–1808Google Scholar
  40. Oakley GP Jr., Bell KN, Weber MB (2004) Recommendations for accelerating global action to prevent folic acid-preventable birth defects and other folate-deficiency diseases: meeting of experts on preventing folic acid-preventable neural tube defects. Birth Defects Res A Clin Mol Teratol 70:835–837CrossRefGoogle Scholar
  41. Rancourt SL, Walker VK (1990) Kinetic characterization of dihydrofolate reductase from Drosophila melanogaster. Biochem Cell Biol 68:1075–1082CrossRefGoogle Scholar
  42. Simonsen CC, Levinson AD (1983) Isolation and expression of an altered mouse dihydrofolate reductase cDNA. PNAS 80:2495–2499CrossRefGoogle Scholar
  43. Srimatkandada S, Medina WD, Cashmore AR, Whyte W, Engel D, Moroson BA, Franco CT, Dube SK, Bertino JR (1983) Amplification and organization of dihydrofolate reductase genes in a human leukemic cell line, K-562, resistant to methotrexate. Biochemistry 22:5774–5781CrossRefGoogle Scholar
  44. Sun JH, Das KM (2005) Low-dose oral methotrexate for maintaining Crohn’s disease remission: where we stand. J Clin Gastrointerol 39:751–756CrossRefGoogle Scholar
  45. Sutton C, McIvor RS, Vagt M, Doggett B, Kapur RP (1998) Methotrexate-resistant form of dihydrofolate reductase protects transgenic murine embryos from teratogenic effects of methotrexate. Pediatr Dev Pathol 1:503–512CrossRefGoogle Scholar
  46. Takata R, Katagiri T, Kanehira M, Tsunoda T, Shuin T, Miki T, Namiki M, Kohri K, Matsushita Y, Fujioka T, Nakamura Y (2005) Predicting response to methotrexate, vinblastine, doxorubicin, and cisplatin neoadjuvant chemotherapy for bladder cancers through genome-wide gene expression profiling. Clin Cancer Res 11:2625–2636CrossRefGoogle Scholar
  47. Vinson RK, Hales BF (2002) Expression and activity of the DNA repair enzyme uracil DNA glycosylase during organogenesis in the rat conceptus and following methotrexate exposure in vitro. Biochem Pharmacol 64:711–721CrossRefGoogle Scholar
  48. von Sternberg RM, Novick GE, Gao GP, Herrera RJ (1992) Genome canalization: the coevolution of transposable and interspersed repetitive elements with single copy DNA. Genetica 86:215–246CrossRefGoogle Scholar
  49. Weikert C, Hoffmann K, Dierkes J, Zyriax BC, Klipstein-Grobusch K, Schulze MB, Jung R, Windler E, Boeing H (2005) A homocysteine metabolism-related dietary pattern and the risk of coronary heart disease in two independent German study populations. J Nutr 135:1981–1988Google Scholar
  50. Wise CM, Vuyyuru S, Roberts WN (1996) Methotrexate in nonrenal lupus and undifferentiated connective tissue disease – a review of 36 patients. J Rheumatol 23:1005–1010Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of BiologyQueen’s UniversityKingstonCanada

Personalised recommendations