Skip to main content

Advertisement

Log in

A role for Drosophila in understanding drug-induced cytotoxicity and teratogenesis

  • SI: Heterologous Gene Expression
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Drosophila research has been and continues to be an essential tool for many aspects of biological scientific research and has provided insight into numerous genetic, biochemical, and behavioral processes. As well, due to the remarkable conservation of gene function between Drosophila and humans, and the easy ability to manipulate these genes in a whole organism, Drosophila research has proven critical for studying human disease and the physiological response to chemical reagents. Methotrexate, a widely prescribed pharmaceutical which inhibits dihydrofolate reductase and therefore folate metabolism, is known to cause teratogenic effects in human fetuses. Recently, there has been resurgence in the use of methotrexate for inflammatory diseases and ectopic or unwanted pregnancies thus, increasing the need to fully understand the cytotoxicity of this pharmaceutical. Concerns have been raised over the ethics of studying teratogenic drugs like methotrexate in mammalian systems and thus, we have proposed a Drosophila model. We have shown that exposure of female Drosophila to methotrexate results in progeny with developmental abnormalities. We have also shown that methotrexate exposure changes the abundance of many fundamental cellular transcripts. Expression of a dihydrofolate reductase with a reduced affinity for methotrexate can not only prevent much of the abnormal transcript profile but the teratogenesis seen after drug treatment. In the future, such studies may generate useful tools for mammalian antifolate “rescue” therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CHO:

Chinese hamster ovary

DHF:

dihydrofolate

DHFR:

dihydrofolate reductase

MTX:

methotrexate

THF:

tetrahydrofolate

SAM:

S-adenosylmethionine

UAS:

upstream activating sequence

References

  • Adam MP, Manning MA, Beck AE, Kwan A, Enns GM, Clericuzio C, Hoyme HE (2003) Methotrexate/misoprostol embryopathy: report of four cases resulting from failed medical abortion. Am J Med Genet A 123:72–78

    Article  Google Scholar 

  • Affleck JG, Al-Batayneh KM, Neumann K, Cole SP, Walker VK (2006) Drosophila dihydrofolate reductase mutations confer resistance to mammalian cells. Eur J Pharmacol 529:71–78

    Article  CAS  Google Scholar 

  • Affleck JG, Neumann K, Wong L, Walker VK (2006) The effects of methotrexate on Drosophila development, female fecundity, and gene expression. Toxicol Sci 89:495–503

    Article  CAS  Google Scholar 

  • Affleck JG, Walker VK (2007) Transgenic rescue of methotrexate-induced teratogenicity in Drosophila melanogaster. Toxicol Sci 99:522–531

    Article  CAS  Google Scholar 

  • Appleman JR, Prendergast N, Delcamp TJ, Freisheim JH, Blakley RL (1988) Kinetics of the formation and isomerization of methotrexate complexes of recombinant human dihydrofolate reductase. J Biol Chem 263:10304–10413

    CAS  Google Scholar 

  • Brachat A, Pierrat B, Xynos A, Brecht K, Simonen M, Brungger A, Heim J (2002) A microarray-based, integrated approach to identify novel regulators of cancer drug response and apoptosis. Oncogene 21:8361–8371

    Article  CAS  Google Scholar 

  • Brzezinska A, Winska P, Balinska M (2000) Cellular aspects of folate and antifolate membrane transport. Acta Biochim Pol 47:735–749

    CAS  Google Scholar 

  • Chen MJ, Shimada T, Moulton AD, Cline A, Humphries RK, Maizel J, Nienhuis AW (1984) The functional human dihydrofolate reductase gene. J Biol Chem 259:3933–3943

    CAS  Google Scholar 

  • Cody V, Luft JR, Pangborn W (2005) Understanding the role of Leu22 variants in methotrexate resistance: comparison of wild-type and Leu22Arg variant mouse and human dihydrofolate reductase ternary crystal complexes with methotrexate and NADPH. Acta Crystallogr D Biol Crystallogr 61:147–155

    Article  CAS  Google Scholar 

  • Crosby MA, Goodman JL, Strelets VB, Zhang P, Gelbart WM, FlyBase Consortium (2007) FlyBase: genomes by the dozen. Nucleic Acids Res 35:D486–D491

    Article  CAS  Google Scholar 

  • Dadd RH (1973) Insect nutrition: current developments and metabolic implications. Annu Rev Entomol 18:381–420

    Article  CAS  Google Scholar 

  • Darab DJ, Minkoff R, Sciote J, Sulik KK (1987) Pathogenesis of median facial clefts in mice treated with methotrexate. Teratology 36:77–86

    Article  CAS  Google Scholar 

  • DeSesso JM, Goeringer GC (1991) Amelioration by leucovorin of methotrexate developmental toxicity in rabbits. Teratology 43:201–215

    Article  CAS  Google Scholar 

  • Dicker AP, Volkenandt M, Bertino JR (1989) Detection of a single base mutation in the human dihydrofolate reductase gene from a methotrexate-resistant cell line using the polymerase chain reaction. Cancer Commun 1:7–12

    CAS  Google Scholar 

  • Fairfield KM, Fletcher RH (2002) Vitamins for chronic disease prevention in adults: scientific review. J Amer Med Assoc 287:3116–3126

    Article  CAS  Google Scholar 

  • Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398

    Article  CAS  Google Scholar 

  • Fernandez H, Yves VSC, Pauthier S, Audibert F, Frydman R (1998) Randomized trial of conservative laparoscopic treatment and methotrexate administration in ectopic pregnancy and subsequent fertility. Human Repro 13:3239–3243

    Article  CAS  Google Scholar 

  • Fernandez R, Tabarini D, Azpiazu N, Frasch M, Schlessinger J (1995) The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. EMBO J 14:3373–3384

    CAS  Google Scholar 

  • Fernandez-Ballart J, Murphy MM (2001) Preventive nutritional supplementation through the reproductive life cycle. Public Health Nutr 4:1363–1366

    Article  CAS  Google Scholar 

  • Ganter B, Tugendreich S, Pearson CI, Ayanoglu E, Baumhueter S, Bostian KA, Brady L, Browne LJ, Calvin JT, Day GJ, Breckenridge N, Dunlea S, Eynon BP, Furness LM, Ferng J, Fielden MR, Fujimoto SY, Gong L, Hu C, Idury R, Judo MS, Kolaja KL, Lee MD, McSorley C, Minor JM, Nair RV, Natsoulis G, Nguyen P, Nicholson SM, Pham H, Roter AH, Sun D, Tan S, Thode S, Tolley AM, Vladimirova A, Yang J, Zhou Z, Jarnagin K (2005) Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. J Biotechnol 119:219–244

    Article  CAS  Google Scholar 

  • Gorlick R, Cole P, Banerjee D, Longo G, Li WW, Hochhauser D, Bertino JR (1999) Mechanisms of methotrexate resistance in acute leukemia. Decreased transport and polyglutamylation. Adv Exp Med Biol 457:543–550

    CAS  Google Scholar 

  • Goujon C, Berard F, Dahel K, Guillot I, Hennino A, Nosbaum A, Saad N, Nicolas JF (2006) Methotrexate for treatment of adult atopic dermatitis. Eur J Dermatol 16:155–158

    CAS  Google Scholar 

  • Hammes GG (2002) Multiple conformational changes in enzymes catalysis. Biochemistry 41:8221–8228

    Article  CAS  Google Scholar 

  • Hao H, Tyshenko MG, Walker VK (1994) Dihydrofolate reductase of Drosophila. Cloning and expression of a gene with a rare transcript. J Biol Chem 269:15179–15185

    CAS  Google Scholar 

  • Huang Q, Jin X, Gaillard ET, Knight BL, Pack FD, Stoltz JH, Jayadev S, Blanchard KT (2004) Gene expression profiling reveals multiple toxicity endpoints by hepatotoxicants. Mutat Res 549:147–167

    CAS  Google Scholar 

  • Huennekens FM (1994) The methotrexate story: a paradigm for development of cancer chemotherapeutic agents. Adv Enzyme Regul 34:397–419

    Article  CAS  Google Scholar 

  • Jarabak J, Bachur NR (1971) A soluble dihydrofolate reductase from human placenta: purification and properties. Arch Biochem Biophys 142:417–425

    Article  CAS  Google Scholar 

  • Jin S, Martinek S, Joo WS, Wortman JR, Mirkovic N, Sali A, Yandell MD, Pavletich NP, Young MW, Levine AJ (2000) Identification and characterization of a p53 homologue in Drosophila melanogaster. PNAS 97:7301–7306

    Article  CAS  Google Scholar 

  • Khera KS (1976) Teratogenicity studies with methotrexate, aminopterin, and acetylsalicylic acid in domestic cats. Teratology 14:21–27

    Article  CAS  Google Scholar 

  • King RC (1970) Ovarian development in Drosophila melanogaster. Academic Press, New York

    Google Scholar 

  • Kompis IM, Islam K, Then RL (2005) DNA and RNA synthesis: antifolates. Chem Rev 105:593–620

    Article  CAS  Google Scholar 

  • Lewden B, Vial T, Elefant E, Nelva A, Carlier P, Descotes J (2004) Low dose methotrexate in the first trimester of pregnancy: results of a French collaborative study. J Rheumatol 31:2360–2365

    CAS  Google Scholar 

  • Lloyd ME, Carr M, McElhatton P, Hall GM, Hughes RA (1999) The effects of methotrexate on pregnancy, fertility and lactation. Q J Med 92:551–563

    CAS  Google Scholar 

  • Malinow MR, Duell PB, Hess DL, Anderson PH, Kruger WD, Phillipson BE, Gluckman RA, Block PC, Upson BM (1998) Reduction of plasma homocyst(e)ine levels by breakfast cereal fortified with folic acid in patients with coronary heart disease. N Engl J Med 338:1009–1015

    Article  CAS  Google Scholar 

  • May C, Gunther R, McIvor RS (1995) Protection of mice from lethal doses of methotrexate by transplantation with transgenic marrow expressing drug-resistant dihydrofolate reductase activity. Blood 86:2439–2348

    CAS  Google Scholar 

  • McGuire JJ (2003) Anticancer antifolates: Current status and future directions. Curr Pharm Design 9:2593–2613

    Article  CAS  Google Scholar 

  • McKay JA, Williams EA, Mathers JC (2004) Folate and DNA methylation during in utero development and aging. Biochem Soc Trans 32:1006–1007

    Article  CAS  Google Scholar 

  • Meisel R, Bardenheuer W, Strehblow C, Sorg UR, Elmaagacli A, Seeber S, Flasshove M, Moritz T (2003) Efficient protection from methotrexate toxicity and selection of transduced human hematopoietic cells following gene transfer of dihydrofolate reductase mutants. Exp Hematol 31:1215–1222

    Article  CAS  Google Scholar 

  • Nakazawa F, Matsuno H, Yudoh K, Katayama R, Sawai T, Uzuki M, Kimura T (2001) Methotrexate inhibits rheumatoid synovitis by inducing apoptosis. J Rheumatol 28:1800–1808

    CAS  Google Scholar 

  • Oakley GP Jr., Bell KN, Weber MB (2004) Recommendations for accelerating global action to prevent folic acid-preventable birth defects and other folate-deficiency diseases: meeting of experts on preventing folic acid-preventable neural tube defects. Birth Defects Res A Clin Mol Teratol 70:835–837

    Article  CAS  Google Scholar 

  • Rancourt SL, Walker VK (1990) Kinetic characterization of dihydrofolate reductase from Drosophila melanogaster. Biochem Cell Biol 68:1075–1082

    Article  CAS  Google Scholar 

  • Simonsen CC, Levinson AD (1983) Isolation and expression of an altered mouse dihydrofolate reductase cDNA. PNAS 80:2495–2499

    Article  CAS  Google Scholar 

  • Srimatkandada S, Medina WD, Cashmore AR, Whyte W, Engel D, Moroson BA, Franco CT, Dube SK, Bertino JR (1983) Amplification and organization of dihydrofolate reductase genes in a human leukemic cell line, K-562, resistant to methotrexate. Biochemistry 22:5774–5781

    Article  CAS  Google Scholar 

  • Sun JH, Das KM (2005) Low-dose oral methotrexate for maintaining Crohn’s disease remission: where we stand. J Clin Gastrointerol 39:751–756

    Article  CAS  Google Scholar 

  • Sutton C, McIvor RS, Vagt M, Doggett B, Kapur RP (1998) Methotrexate-resistant form of dihydrofolate reductase protects transgenic murine embryos from teratogenic effects of methotrexate. Pediatr Dev Pathol 1:503–512

    Article  CAS  Google Scholar 

  • Takata R, Katagiri T, Kanehira M, Tsunoda T, Shuin T, Miki T, Namiki M, Kohri K, Matsushita Y, Fujioka T, Nakamura Y (2005) Predicting response to methotrexate, vinblastine, doxorubicin, and cisplatin neoadjuvant chemotherapy for bladder cancers through genome-wide gene expression profiling. Clin Cancer Res 11:2625–2636

    Article  CAS  Google Scholar 

  • Vinson RK, Hales BF (2002) Expression and activity of the DNA repair enzyme uracil DNA glycosylase during organogenesis in the rat conceptus and following methotrexate exposure in vitro. Biochem Pharmacol 64:711–721

    Article  CAS  Google Scholar 

  • von Sternberg RM, Novick GE, Gao GP, Herrera RJ (1992) Genome canalization: the coevolution of transposable and interspersed repetitive elements with single copy DNA. Genetica 86:215–246

    Article  Google Scholar 

  • Weikert C, Hoffmann K, Dierkes J, Zyriax BC, Klipstein-Grobusch K, Schulze MB, Jung R, Windler E, Boeing H (2005) A homocysteine metabolism-related dietary pattern and the risk of coronary heart disease in two independent German study populations. J Nutr 135:1981–1988

    CAS  Google Scholar 

  • Wise CM, Vuyyuru S, Roberts WN (1996) Methotrexate in nonrenal lupus and undifferentiated connective tissue disease – a review of 36 patients. J Rheumatol 23:1005–1010

    CAS  Google Scholar 

Download references

Acknowledgements

Natural Sciences and Engineering Research Council of Canada (NSERC) is acknowledged for scholarship and grant support to the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia K. Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Affleck, J.G., Walker, V.K. A role for Drosophila in understanding drug-induced cytotoxicity and teratogenesis. Cytotechnology 57, 1–9 (2008). https://doi.org/10.1007/s10616-008-9124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-008-9124-5

Keywords

Navigation