Skip to main content

Advertisement

Log in

Recent advances in the generation of human monoclonal antibody

  • Special Issue JAACT
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The use of monoclonal antibodies (mAbs) has now gained a niche as an epochal breakthrough in medicine. Engineered antibodies (Abs) currently account for over 30% of biopharmaceuticals in clinical trials. Several methods to generate human mAbs have evolved, such as (1) immortalization of antigen-specific human B cell hybridoma technology, (2) generation of chimeric and humanized antibody (Ab) from mouse Ab by genetic engineering, (3) acquisition of antigen-specific human B cells by the phage display method, and (4) development of transgenic mice for producing human mAbs. Besides these technologies, we have independently developed a method to generate human mAbs by combining the method of in vitro immunization using peripheral blood mononuclear cells and the phage display method. In this paper, we review the developments in these technologies for generating human mAbs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Boulianne GL, Hozumi N, Shulman MJ (1984) Production of functional chimaeric mouse/human antibody. Nature 312:643

    Article  CAS  Google Scholar 

  • Bradbury AR, Marks JD (2004) Antibodies from phage antibody libraries. J Immunol Meth 290:29

    Article  CAS  Google Scholar 

  • Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1:118

    Article  CAS  Google Scholar 

  • Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6:343

    Article  CAS  Google Scholar 

  • Chowdhury PS, Wu H (2005) Tailor-made antibody therapeutics. Methods 36:11

    Article  CAS  Google Scholar 

  • Gonzales NR, De Pascalis R, Schlom J, Kashmiri SV (2005) Minimizing the immunogenicity of antibodies for clinical application. Tumour Biol 26:31

    Article  CAS  Google Scholar 

  • Green LL, Hardy MC, Maynard-Currie CE, Tsuda H, Louie DM, Mendez MJ, Abderrahim H, Noguchi M, Smith DH, Zeng Y et al (1994) Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet 7:13

    Article  CAS  Google Scholar 

  • Ho M, Kreitman RJ, Onda M, Pastan I (2005) In vitro antibody evolution targeting germline hot spots to increase activity of an anti-CD22 immunotoxin. J Biol Chem 280:607

    Article  CAS  Google Scholar 

  • Hoogenboom HR (2002) Overview of antibody phage-display technology and its applications. Methods Mol Biol 178:1

    CAS  Google Scholar 

  • Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23:1105

    Article  CAS  Google Scholar 

  • Ichikawa A, Katakura Y, Teruya K, Shuichi H, Shirahata S (1999) In vitro immunization of human peripheral blood lymphocytes: establishment of B cell line secreting IgM specific for cholera toxin b subunit from lymphochtes stimulated with IL-2 and IL-4. Cytotechnology 31:131

    Article  CAS  Google Scholar 

  • Jones PT, Dear PH, Foote J, Neuberger MS, Winter G (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522

    Article  CAS  Google Scholar 

  • Kipriyanov SM, Le Gall F (2004) Generation and production of engineered antibodies. Mol Biotechnol 26:39

    Article  CAS  Google Scholar 

  • Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495

    Article  CAS  Google Scholar 

  • Lonberg N (2005) Human antibodies from transgenic animals. Nat Biotechnol 23:1117

    Article  CAS  Google Scholar 

  • Lonberg N, Taylor LD, Harding FA, Trounstine M, Higgins KM, Schramm SR, Kuo CC, Mashayekh R, Wymore K, McCabe JG et al (1994) Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 368:856

    Article  CAS  Google Scholar 

  • Lowe D, Jermutus L (2004) Combinatorial protein biochemistry for therapeutics and proteomics. Curr Pharm Biotechnol 5:17

    Article  CAS  Google Scholar 

  • Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222:581

    Article  CAS  Google Scholar 

  • Martin A, Bardwell PD, Woo CJ, Fan M, Shulman MJ, Scharff MD (2002) Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas. Nature 415:802

    CAS  Google Scholar 

  • McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552

    Article  CAS  Google Scholar 

  • Morrison SL, Johnson MJ, Herzenberg LA, Oi VT (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci USA 81:6851

    Article  CAS  Google Scholar 

  • Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, Honjo T (1999) Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 274:18470

    Article  CAS  Google Scholar 

  • Ober RJ, Radu CG, Ghetie V, Ward ES (2001) Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol 13:1551

    Article  CAS  Google Scholar 

  • Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC (2005) Monoclonal antibody successes in the clinic. Nat Biotechnol 23:1073

    Article  CAS  Google Scholar 

  • Riechmann L, Clark M, Waldmann H, Winter G (1988) Reshaping human antibodies for therapy. Nature 332:323

    Article  CAS  Google Scholar 

  • Sanz L, Cuesta AM, Compte M, Alvarez-Vallina L (2005) Antibody engineering: facing new challenges in cancer therapy. Acta Pharmacol Sin 26:641

    Article  CAS  Google Scholar 

  • Verhoeyen M, Milstein C, Winter G (1988) Reshaping human antibodies: grafting an antilysozyme activity. Science 239:1534

    Article  CAS  Google Scholar 

  • Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, Shitara K, Satoh M (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87:614

    Article  CAS  Google Scholar 

  • Yamashita M, Katakura Y, Shim SY, Matsumoto S, Tamura T, Morihara K, Aiba Y, Teruya K, Tsuchiya T, Shirahata S (2002) Different individual immune responses elicited by in vitro immunization. Cytotechnology 40:161

    Article  CAS  Google Scholar 

  • Yoshikawa K, Okazaki IM, Eto T, Kinoshita K, Muramatsu M, Nagaoka H, Honjo T (2002) AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science 296:2033

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makiko Yamashita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, M., Katakura, Y. & Shirahata, S. Recent advances in the generation of human monoclonal antibody. Cytotechnology 55, 55–60 (2007). https://doi.org/10.1007/s10616-007-9072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-007-9072-5

Keywords

Navigation