Skip to main content
Log in

Generation of retroviruses for the overexpression of cytosolic and mitochondrial glutathione reductase in macrophages in vivo

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Retroviral gene transfer and bone marrow transplantation has been used by many investigators to study the role of macrophage proteins in different mouse models of human disease. While this approach is faster and less expensive than generating transgenic mice with macrophage-specific promoters and applicable to a wider array of mouse models, it has been hampered by two major drawbacks: labor-intensive cloning procedures involved in generating retroviral vectors for each gene of interest and low viral titers. Here we describe the construction of a MSCV-based retroviral vector that can serve as an acceptor vector for commercially available Cre-lox-compatible donor vectors. Using this new retroviral vector in combination with a FACS approach to enhance viral titers, we generated high-titer retroviruses carrying either EGFP-tagged cytosolic or EGFP-tagged mitochondria-targeted glutathione reductase. We show that the introduction of these constructs via retroviral gene transfer and bone marrow transplantation into atherosclerosis-prone LDL receptor-null mice results in the long-term increase in macrophage glutathione reductase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asmis R, Wang Y, Xu L, Kisgati M, Begley JG, Mieyal JJ (2005) A novel thiol oxidation-based mechanism for adriamycin-induced cell injury in human macrophages. FASEB J 19:1866–1868

    PubMed  CAS  Google Scholar 

  • Asmis R, Qiao M, Rossi RR, Cholewa J, Xu L, Asmis LM (2006) Adriamycin promotes macrophage dysfunction in mice. Free Radic Biol Med 41:165–174

    Article  PubMed  CAS  Google Scholar 

  • Brenner MK, Cunningham JM, Sorrentino BP, Heslop HE (1995) Gene transfer into human hemopoietic progenitor cells. Br Med Bull 51:167–191

    PubMed  CAS  Google Scholar 

  • Chaudiere J, Ferrari-Iliou R (1999) Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 37:949–962

    Article  PubMed  CAS  Google Scholar 

  • Daugherty A, Kosswig N, Cornicelli JA, Whitman SC, Wolle S, Rateri DL (2001) Macrophage-specific expression of class A scavenger receptors enhances granuloma formation in the absence of increased lipid deposition. J Lipid Res 42:1049–1055

    PubMed  CAS  Google Scholar 

  • Dunbar CE, Emmons RV (1994) Gene transfer into hematopoietic progenitor and stem cells: progress and problems. Stem Cells 12:563–576

    Article  PubMed  CAS  Google Scholar 

  • Einerhand MP, Valerio D (1992) Gene transfer into hematopoietic stem cells: prospects for human gene therapy. Curr Top Microbiol Immunol 177:217–235

    PubMed  CAS  Google Scholar 

  • George DL, Francke U (1976) Gene dose effect: regional mapping of human glutathione reductase on chromosome 8. Cytogenet Cell Genet 17:282–286

    PubMed  CAS  Google Scholar 

  • Ghesquiere SA, Gijbels MJ, Anthonsen M, van Gorp PJ, van der Made I, Johansen B, Hofker MH, de Winther MP (2005) Macrophage-specific overexpression of group IIa sPLA2 increases atherosclerosis and enhances collagen deposition. J Lipid Res 46:201–210

    Article  PubMed  CAS  Google Scholar 

  • Glass CK, Witztum JL (2001) Atherosclerosis. the road ahead. Cell 104:503–516

    Article  PubMed  CAS  Google Scholar 

  • Hasty AH, Linton MF, Brandt SJ, Babaev VR, Gleaves LA, Fazio S (1999) Retroviral gene therapy in ApoE-deficient mice––ApoE expression in the artery wall reduces early foam cell lesion formation. Circulation 99:2571–2576

    PubMed  CAS  Google Scholar 

  • Hawley RG, Lieu FH, Fong AZ, Hawley TS (1994) Versatile retroviral vectors for potential use in gene therapy. Gene Ther 1:136–138

    PubMed  CAS  Google Scholar 

  • Heider H, Verca SB, Rusconi S, Asmis R (2000) Comparison of lipid-mediated and adenoviral gene transfer to human monocyte-derived macrophages and COS-7 cells. BioTechniques 28:260–270

    PubMed  CAS  Google Scholar 

  • Horvai A, Palinski W, Wu H, Moulton KS, Kalla K, Glass CK (1995) Scavenger receptor A gene regulatory elements target gene expression to macrophages and to foam cells of atherosclerotic lesions. Proc Natl Acad Sci USA 92:5391–5395

    Article  PubMed  ADS  CAS  Google Scholar 

  • Iozef R, Becker K, Boehme CC, Schirmer RH, Werner D (2000) Assembly and functional expression of murine glutathione reductase cDNA: a sequence missing in expressed sequence tag libraries. Biochim Biophys Acta 1500:137–141

    PubMed  CAS  Google Scholar 

  • Ishiguro H, Yoshida H, Major AS, Zhu T, Babaev VR, Linton MF, Fazio S (2001) Retrovirus-mediated expression of apolipoprotein A-I in the macrophage protects against atherosclerosis in vivo. J Biol Chem 276:36742–36748

    Article  PubMed  CAS  Google Scholar 

  • Kerr WG, Mule JJ (1994) Gene therapy: current status and future prospects. J Leukoc Biol 56:210–214

    PubMed  CAS  Google Scholar 

  • Lang R, Rutschman RL, Greaves DR, Murray PJ (2002) Autocrine deactivation of macrophages in transgenic mice constitutively overexpressing IL-10 under control of the human CD68 promoter. J Immunol 168:3402–3411

    PubMed  CAS  Google Scholar 

  • Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263:17205–17208

    PubMed  CAS  Google Scholar 

  • Miller AD (1992) Retroviral vectors. Curr Top Microbiol Immunol 158:1–24

    Article  PubMed  CAS  Google Scholar 

  • Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  • Nienhuis AW, McDonagh KT, Bodine DM (1991) Gene transfer into hematopoietic stem cells. Cancer 67:2700–2704

    Article  PubMed  CAS  Google Scholar 

  • Ross R (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340:115–126

    Article  PubMed  CAS  Google Scholar 

  • Savvides SN, Scheiwein M, Böhme CC, Arteel GE, Karplus PA, Becker K, Schirmer RH (2002) Crystal structure of the antioxidant enzyme glutathione reductase inactivated by peroxynitrite. J Biol Chem 277:2779–2784

    Article  PubMed  CAS  Google Scholar 

  • Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924

    Article  PubMed  CAS  Google Scholar 

  • Stocker R, Keaney JF Jr (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84:1381–1478

    Article  PubMed  CAS  Google Scholar 

  • Tutic M, Lu XA, Schirmer RH, Werner D (1990) Cloning and sequencing of mammalian glutathione reductase cDNA. Eur J Biochem 188:523–528

    Article  PubMed  CAS  Google Scholar 

  • Vile RG, Russell SJ (1995) Retroviruses as vectors. Br Med Bull 51:12–30

    PubMed  CAS  Google Scholar 

  • Wang Y, Qiao M, Mieyal JJ, Asmis LM, Asmis R (2006) Molecular mechanism of glutathione-mediated protection from oxidized LDL-induced cell injury in human macrophages: role of glutathione reductase and glutaredoxin. Free Radic Biol Med 41:775–785

    Article  PubMed  CAS  Google Scholar 

  • Webb NR, Bostrom MA, Szilvassy SJ, van der Westhuyzen DR, Daugherty A, de Beer FC (2003) Macrophage-expressed group IIA secretory phospholipase A2 increases atherosclerotic lesion formation in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 23:263–268

    Article  PubMed  CAS  Google Scholar 

  • Wilson K, Fry GL, Chappell DA, Sigmund CD, Medh JD (2001) Macrophage-specific expression of human lipoprotein lipase accelerates atherosclerosis in transgenic apolipoprotein e knockout mice but not in C57BL/6 mice. Arterioscler Thromb Vasc Biol 21:1809–1815

    PubMed  CAS  Google Scholar 

  • Yoshida H, Hasty AH, Major AS, Ishiguro H, Su YR, Gleaves LA, Babaev VR, Linton MF, Fazio S (2001) Isoform-specific effects of apolipoprotein E on atherogenesis: gene transduction studies in mice. Circulation 104:2820–2825

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Jill Chelowa and Li Xu for their technical assistance. This work was supported by grants to R.A. from the National Institutes of Heath (HL-70963) and the American Heart Association (455176B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reto Asmis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kisgati, M., Asmis, R. Generation of retroviruses for the overexpression of cytosolic and mitochondrial glutathione reductase in macrophages in vivo. Cytotechnology 54, 5–14 (2007). https://doi.org/10.1007/s10616-007-9046-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-007-9046-7

Keywords

Navigation