Skip to main content

Advertisement

Log in

Related effects of cell adaptation to serum-free conditions on murine EPO production and glycosylation by CHO cells

  • Original paper
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The necessity to perform serum-free cultures to produce recombinant glycoproteins generally requires an adaptation procedure of the cell line to new environmental conditions, which may therefore induce quantitative and qualitative effects on the product, particularly on its glycosylation. In previous studies, desialylation of EPO produced by CHO cells was shown to be dependent on the presence of serum in the medium. In this paper, to discriminate between the effects of the adaptation procedure to serum-free medium and the effects of the absence of serum on EPO production and glycosylation, adapted and non-adapted CHO cells were grown in serum-free and serum-containing media. The main kinetics of CHO cells were determined over batch processes as well as the glycosylation patterns of produced EPO by HPCE-LIF. A reversible decrease in EPO production was observed when cells were adapted to SFX-CHOTM medium, as the same cells partially recovered their production capacity when cultivated in serum-containing medium or in the enriched SFMTM serum-free medium. More interestingly, EPO desialylation that was not observed in both serum-free media was restored if the serum-independent cells were recultured in presence of serum. In the same way, while the serum-independent cells did not release a sialidase activity in both serum-free media, a significant activity was recovered when serum was added. In fact, the cell adaptation process to serum-free conditions did not specifically affect the sialidase release and the cellular mechanism of protein desialylation, which appeared to be mainly related to the presence of serum for both adapted and non-adapted cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen DC, Goochee CF (1995) The effect of ammonia on the O-linked glycosylation of granulocyte colony-stimulating factor produced by Chinese hamster ovary cells. Biotechnol Bioeng 47:96–105

    Article  CAS  Google Scholar 

  • Borys MC, Linzer DIH, Papoutsakis ET (1994) Ammonia affects the glycosylation patterns of recombinant mouse placental lactogen-I by Chinese hamster ovary cells in a pH-dependant manner. Biotechnol Bioeng 43:505–514

    Article  CAS  Google Scholar 

  • Buntemeyer H, Lutkemeyer D, Lehmann J (1991) Optimization of serum-free fermentation processes for antibody production. Cytotechnology 5:57–67

    Article  CAS  Google Scholar 

  • Cabrera G, Crema JA, Valdes R, Garcia R, Gonzales Y, Montesino R, Gomez H, Gonzales M (2005) Influence of culture conditions on the N-glycosylation of a monoclonal antibody specific for recombinant hepatis B surface antigen. Biotechnol Appl Biochem 41:67–76

    Article  CAS  Google Scholar 

  • Castro PM, Hayter PM, Ison AP, Bull AT (1992) Application of a statistical design to the optimization of culture medium for recombinant interferon-γ production by Chinese hamster ovary cells. Appl Microbiol Biotechnol 38:84–90

    Article  CAS  Google Scholar 

  • Castro PML, Ison AP, Hayter PM, Bull AT (1995) The macroheterogeneity of recombinant human interferon-γ produced by Chinese hamster ovary cells is affected by the protein and lipid content of the culture medium. Biotechnol Appl Biochem 21:87–100

    CAS  Google Scholar 

  • Chen AFT, Evangelista RA (1998) Profiling glycoprotein N-linked oligosaccharide by capillary electrophoresis. Electrophoresis 19:2639–2644

    Article  CAS  Google Scholar 

  • Chen P, Harcum SW (2005) Effects of amino acid additions on ammonium stressed CHO cells. J Biotechnol 117:277–286

    Article  CAS  Google Scholar 

  • Dordal MS, Wang FF, Goldwasser E (1985) The role of carbohydrate in erythropoietin action. Endocrinology 116:2293–2299

    Article  CAS  Google Scholar 

  • Elliott S, Egrie J, Browne J, Lorenzini T, Busse L, Rogers N, Ponting I (2004) Control oh rHuEPO biological activity: the role of carbohydrate. Exp Hematol 32:1146–1155

    Article  CAS  Google Scholar 

  • Froud SJ (1999) The development, benefits and disadvantages of serum-free media. Dev Biol Stand 99:157–166

    CAS  Google Scholar 

  • Gawlitzek M, Valley U, Nimtz M, Wagner R, Conradt HS (1995) Characterization of changes in the glycosylation pattern of recombinant proteins from BHK-21 cells due to different culture conditions. J Biotechnol 42:117–131

    Article  CAS  Google Scholar 

  • Gawlitzek M, Valley U, Wagner R (1998) Ammonium ion and glucosamine dependent increases of oligosaccharide complexity in recombinant glycoproteins secreted from cultivated BHK-21 cells. Biotechnol Bioeng 57:518–528

    Article  CAS  Google Scholar 

  • Goochee CF, Monica T (1990) Environmental effects on protein glycosylation. Bio/Technology 8:421–426

    Article  CAS  Google Scholar 

  • Goto M, Akai K, Murakami C, Hashimoto C, Tsuda E, Ueda M, Kawanishi G, Takahashi N, Ishimoto A, Chiba H, Sasaki R (1988) Production of recombinant human erythropoietin in mammalian cells: host-cell dependency of the biological activity of the cloned glycoprotein. Bio/Technology 6:67–71

    Article  CAS  Google Scholar 

  • Gramer MJ, Goochee CF (1993) Glycosidase activities in Chinese hamster ovary cell lysate and cell culture supernatant. Biotechnol Prog 9:366–373

    Article  CAS  Google Scholar 

  • Gramer MJ, Goochee CF, Chock VY, Brousseau DT, Sliwkowski MB (1995) Removal of sialic acid from a glycoprotein in CHO cell culture supernatant by action of an extracellular CHO cell sialidase. Bio/Technology 13:692–698

    Article  CAS  Google Scholar 

  • Gramer MJ (2000) Detecting and minimizing glycosidase activities that can hydrolyze sugars from cell culture-produced glycoproteins. Mol Biotechnol 15:69–75

    Article  CAS  Google Scholar 

  • Grammatikos SI, Valley U, Nimtz M, Conradt HS, Wagner R (1998) Intracellular UDP-N-acetylhexosamine pool affects N-glycan complexity: a mechanism of ammonium action on protein glycosylation. Biotechnol Prog 14:410–419

    Article  CAS  Google Scholar 

  • Hewlett G (1991) Strategies for optimising serum-free media. Cytotechnology 5:3–14

    Article  CAS  Google Scholar 

  • Hokke CH, Bergwerff AA, Van Dedem GW, Kamerling JP, Vliegenthart JF (1995) Structural analysis of the sialylated N- and O-linked carbohydrate chains of recombinant human erythropoietin expressed in Chinese hamster ovary cells. Sialylation patterns and branch location of dimeric N-acetyllactosamine units. Eur J Biochem 228:981–1008

    Article  CAS  Google Scholar 

  • Imai N, Higuchi M, Kawamura A, Tomonoh K, Oh-Eda M, Fujiwara M, Shimonaka Y, Ochi N (1990) Physicochemical and biological characterization of asialoerythropoietin. Suppressive effects of sialic acid in the expression of biological activity of human erythropoietin in vitro. Eur J Biochem 194:457–462

    Article  CAS  Google Scholar 

  • Inoue Y, Lopez LB, Kawamoto S, Arita N, Teruya K, Seki K, Shoji M, Kamei M, Hashizume S, Shiozawa Y, Tachibana H, Ohashi H, Yasumoto K, Nagashima A, Nakahashi H, Suzuki T, Imai T, Nomoto K, Takenoyama M, Katakura Y, Shirahata S (1996) Production of recombinant human monoclonal antibody using ras-amplified BHK-21 cells in a protein-free medium. Biosci Biotech Biochem 60:811–817

    Article  CAS  Google Scholar 

  • Jenkins N, Curling EMA (1994) Glycosylation of recombinant proteins: problems and prospects. Enzyme Microb Technol 16:354–364

    Article  CAS  Google Scholar 

  • Jenkins N, Castro P, Menon S, Ison A, Bull A (1994) Effect of lipid supplements on the production and glycosylation of recombinant interferon-gamma expressed in CHO cells. Cytotechnology 15:209–215

    Article  CAS  Google Scholar 

  • Jenkins N, Parekh RB, James DC (1996) Getting the glycosylation right: implications for the biotechnology industry. Nat Biotechnol 14:975–981

    Article  CAS  Google Scholar 

  • Kobata A (1992) Structures and functions of the sugar chains of glycoproteins. Eur J Biochem 209:483–501

    Article  CAS  Google Scholar 

  • Kopp K, Schluter M, Werner R (1996) Monitoring the glycosylation pattern of recombinant interferon-gamma with high-pH anion-exchange chromatography and capillary electrophoresis. Arzneim-Forsch/Drug Res 46:1191–1196

    CAS  Google Scholar 

  • Koury MJ (2003) Sugar coating extends half-lives and improves effectiveness of cytokine hormones. Trends Biotechnol 21:462–464

    Article  CAS  Google Scholar 

  • Lamotte D (1997) Production et glycosylation de l’interféron-γ humain par des cellules CHO cultivées en bioréacteurs discontinus et perfusés. Influence des conditions opératoires et du potentiel de glycosylation des cellules. Ph.D. thesis, INPL, Nancy, pp 133–142

  • Lamotte D, Buckberry L, Monaco L, Soria M, Jenkins N, Engasser JM, Marc A (1999) Na-butyrate increases the production and alpha 2,6-sialylation of recombinant interferon-gamma expressed by alpha 2,6-sialyltransferase engineered CHO cells. Cytotechnology 29:55–64

    Article  CAS  Google Scholar 

  • Lee GM, Kim EJ, Kim NS, Yoon SK, Ahn YH, Song JY (1999) Development of serum-free medium for the production of EPO by suspension culture of recombinant CHO cells using a statistical design. J Biotechnol 69:85–93

    Article  CAS  Google Scholar 

  • Le Floch F, Tessier B, Chenuet S, Guillaume JM, Cans P, Marc A, Goergen JL (2004) HPCE-monitoring of the N-glycosylation pattern and sialylation of murine erythropoietin produced by CHO cells in batch processes. Biotechnol Prog 20:864–871

    Article  CAS  Google Scholar 

  • Lifely MR, Hale C, Boyce S, Keen MJ, Phillips J (1995) Glycosylation and biological activity of CAMPATH-1H expressed in different cell lines and grown under different culture conditions. Glycobiology 5:813–822

    Article  CAS  Google Scholar 

  • Lipscomb ML, Palomares LA, Hernandez V, Ramirez OT, Kompala DS (2005) Effect of production method and gene amplification on the glycosylation pattern of a secreted reporter protein in CHO cells. Biotechnol Prog 21:40–49

    Article  CAS  Google Scholar 

  • Liu C, Chu I, Hwang S (2001) Factorial designs combined with the steepest ascent method to optimize serum-free media for CHO cells. Enzyme Microb Technol 28:314-321

    Article  CAS  Google Scholar 

  • Maiorella BL, Winkelhake J, Young J, Moyer B, Bauer R, Hora M, Andya J, Thomson J, Patel T, Parekh R (1993) Effect of culture conditions on IgM antibody structure, pharmacokinetics and activity. Bio/Technology 11:387–392

    Article  CAS  Google Scholar 

  • Megaw JM, Johnson LD (1979) Glycoprotein synthesized by cultured cells: effects of serum concentrations and buffers on sugar content. Proc Soc Exp Biol Med 161:60–65

    CAS  Google Scholar 

  • Misaizu T, Matsuki S, Strickland TW, Takeuchi M, Kobata A, Takasaki S (1995) Role of antennary structure of N-linked sugar chains in renal handling of recombinant human erythropoietin. Blood 86:4097–4104

    CAS  Google Scholar 

  • Moellering BJ, Tedesco JL, Townsend R, Hardy MR, Scott RS, Prior CP (1990) Electrophoretic differences in a MAb expressed in three media. BioPharm 3:30–38

    Google Scholar 

  • Monaco L, Marc A, Eon-Duval A, Acerbis G, Distefano G, Lamotte D, Engasser JM, Soria M, Jenkins N (1996) Genetic engineering of alpha2,6-sialyltransferase in recombinant CHO cells and its effect on the sialylation of recombinant interferon-gamma. Cytotechnology 22:197–203

    Article  CAS  Google Scholar 

  • Ozturk SS, Palsson BO (1991) Physiological changes during the adaptation of hybridoma cells to low serum and serum-free media. Biotechnol Bioeng 37:35–46

    Article  CAS  Google Scholar 

  • Ozturk S, Kaseko G, Mahaworasilpa T, Coster HG (2003) Adaptation of cell lines to serum-free culture medium. Hybrid Hybridomics 22:267–272

    Article  CAS  Google Scholar 

  • Patel TP, Parekh RB, Moellering B, Prior CP (1992) Different culture methods lead to differences in glycosylation of a murine IgG monoclonal antibody. Biochem J 285:839–845

    CAS  Google Scholar 

  • Recny MA, Scoble HA, Kim Y (1987) Structural characterization of natural human urinary and recombinant DNA-derived erythropoietin. Identification of des-arginine 166 erythropoietin. J Biol Chem 262:17156–17163

    CAS  Google Scholar 

  • Sasaki H, Bothner B, Dell A, Fukuda M (1987) Carbohydrate structure of erythropoietin expressed in CHO cells by a human erythropoietin cDNA. J Biol Chem 262:12059–12076

    CAS  Google Scholar 

  • Sasaki H, Ochi N, Dell A, Fukuda M (1988) Site-specific glycosylation of human recombinant erythropoietin: analysis of glycopeptides or peptides at each glycosylation site by FAB-MS. Biochemistry 27:8618–8626

    Article  CAS  Google Scholar 

  • Schauer R (1988) Sialic acids as antigenic determinants of complex carbohydrates. Adv Exp Med Biol 228:47–72

    CAS  Google Scholar 

  • Spearman M, Rodriguez J, Huzel N, Butler M (2005) Production and glycosylation of recombinant beta-interferon in suspension and cytopore microcarrier cultures of CHO cells. Biotechnol Prog 21:31–39

    Article  CAS  Google Scholar 

  • Stubiger G, Marchetti M, Nagano M, Grimm R, Gmeiner G, Reichel C, Allmaier G (2005) Characterization of N- and O- glycopeptides of recombinant human erythropoietins as potential biomarkers for doping analysis by means of microscale sample purification combined with MALDI-TOF and quadrupole IT/RTOF mass spectrometry. J Sep Sci 28:1764–1778

    Article  Google Scholar 

  • Sung YH, Song YJ, Lim SW, Chung JY, Lee GM (2005) Effect of sodium butyrate on the production, heterogeneity and biological activity of human thrombopoietin by recombinant Chinese hamster ovary cells. J Biotechnol 112:323–335

    Article  CAS  Google Scholar 

  • Takeuchi M, Takasaki S, Miyazaki H, Kato T, Hoshi S, Kochibe N, Kobata A (1988) Comparative study of the asparagine-linked sugar chains of human erythropoietins purified from urine and the culture medium of recombinant CHO cells. J Biol Chem 263:3657–3663

    CAS  Google Scholar 

  • Takeuchi M, Inoue N, Strikland TW, Kubota M, Wada M, Shimizu R, Hoshi S, Kozutsumi H, Takasaki S, Kobata A (1989) Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells. Proc Natl Acad Sci USA 86:7819–7822

    Article  CAS  Google Scholar 

  • Takeuchi M, Kobata A (1991) Structures and functional roles of the sugar chains of human erythropoietins. Glycobiology 1:337–346

    Article  CAS  Google Scholar 

  • Tomiya N, Betenbaugh MJ, Lee YC (2003) Humanization of lepidopteran insect-cell-produced glycoproteins. Acc Chem Res 36:613–620

    Article  CAS  Google Scholar 

  • Tsuda E, Kawanishi G, Ueda M, Masuda S, Sasaki R (1990) The role of carbohydrate in recombinant human erythropoietin. Eur J Biochem 188:405–411

    Article  CAS  Google Scholar 

  • Watson E, Bhide A, van Halbeek H (1994) Structure determination of the intact major sialylated oligosaccharide chains of recombinant human erythropoietin expressed in CHO cells. Glycobiology 4:227–237

    Article  CAS  Google Scholar 

  • Yang M, Butler M (2000) Effects of ammonia on CHO cell growth, erythropoietin production and glycosylation. Biotechnol Bioeng 68:370–380

    Article  CAS  Google Scholar 

  • Yang M, Butler M (2000a) Effect of ammonia on the glycosylation of human recombinant erythropoietin in culture. Biotechnol Prog 16:751–759

    Article  CAS  Google Scholar 

  • Yang M, Butler M (2000b) Enhanced erythropoietin in a CHO culture is caused by proteolytic degradation and can be eliminated by a high glutamine level. Cytotechnology 34:83–89

    Article  CAS  Google Scholar 

  • Yang M, Butler M (2002) Effects of ammonia and glucosamine on the heterogeneity of erythropoietin glycoforms. Biotechnol Prog 18:129–138

    Article  CAS  Google Scholar 

  • Yoon SK, Choi SL, Song JY, Lee GM (2005) Effect of culture pH on EPO production by CHO cells grown in suspension at 32.5 and 37.0 degrees C. Biotechnol Bioeng 89:345–356

    Article  CAS  Google Scholar 

  • Yuen CT, Storring PL, Tiplady RJ, Izquierdo M, Wait R, Gee CK, Gerson P, Lloyd P, Cremata JA (2003) Relationships between the N-glycan structures and biological activities of recombinant human erythropoietins produced using different culture conditions and purification procedures. Br J Haematol 121:511–526

    Article  CAS  Google Scholar 

  • Yusa A, Kitajima K, Habuchi O (2005) N-linked oligosaccharides are required to produce and stabilize the active form of chondroitin 4-sulphotransferase-1. Biochem J 388:115–121

    Article  CAS  Google Scholar 

  • Zhang F, Murhammer DW, Linhardt RJ (2002) Enzyme kinetics and glycan structural characterization of secreted alkaline phosphatase prepared using the baculovirus expression vector system. Appl Biochem Biotechnol 101:197–210

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The F. Le Floch fellowship and the project were financed by the Agence Nationale pour la Recherche Technique and Aventis Pharma (Paris, France). The authors are grateful to Dr. Abderrahim Mahfoudi (Aventis Pharma, Paris) for donating the cDNA coding for the EPO cassette, Fabrice Blanchard (LSGC, Nancy) for his technical support, and Professor Jean Straczek and Pascal Perrin (University H. Poincaré, Nancy) for their expert scientific assistance in capillary electrophoresis analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Marc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeFloch, F., Tessier, B., Chenuet, S. et al. Related effects of cell adaptation to serum-free conditions on murine EPO production and glycosylation by CHO cells. Cytotechnology 52, 39–53 (2006). https://doi.org/10.1007/s10616-006-9039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-006-9039-y

Keywords

Navigation