Skip to main content
Log in

Development of porous collagen beads for chondrocyte culture

  • Original Paper
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

A method for the preparation of bioresorbable collagen beads with an open porous structure is presented. These beads were prepared from collagen-alginate composite beads by removal of the alginate component. These collagen beads were suitable for rapid proliferation of chondrocytes in a dynamic, spinner culture system. Histology and immuno-histology showed that biochemical markers of chondrocytes are present during this cell proliferation, indicating that there was control of phenotype and that cell de-differentiation had not occurred. Unlike other 3-D scaffolds that have been used, the cells were amplified from very low cell densities and were able to proliferate freely without loss of phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bouchet BY, Colon M, Polotsky A, Shikani AH, Hungerford DS, Frondoza CG (2000) β1-integrin expression by human nasal chondrocytes in microcarrier spinner culture. J Biomed Mater Res 52:716–724

    Article  CAS  Google Scholar 

  • Brittberg M (1999) Autologous chondrocyte transplantation. Clin Orthopaed Rel Res 367S:147–155

    Article  Google Scholar 

  • Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Eng J Med 331:879–895

    Article  Google Scholar 

  • Buckwalter JA, Mankin HJ (1997) Articular cartilage 2: degeneration and osteoarthrosis, repair, regeneration, and transplantation. J Bone Joint Surg Am 79A:612–632

    Google Scholar 

  • Caterson B, Christner JE, Baker JR (1983) Identification of a monoclonal antibody that specifically recognizes corneal and skeletal keratan sulfate. J Biol Chem 258:8848–8854

    CAS  Google Scholar 

  • Chapman JA, Hulmes DJS (1984) Electron microscopy of the collagen fibril. In: Ruggeri A, Motta PM (eds) Ultrastructure of the connective tissue matrix. Martinus Nijhoff Pub., Boston, pp 1–33

    Google Scholar 

  • Chiang H, Kuo T-F, Tsai C-C, Lin M-C, She B-R, Huang Y-Y, Lee H-S, Shieh C-S, Chen M-H, Ramshaw JAM, Werkmeister JA, Tuan RS, Jiang C-C (2005) Repair of porcine articular cartilage defect with autologous chondrocyte transplantation. J Orth Res 23:584–593

    Article  Google Scholar 

  • Dean RC, Silver FH, Berg RA (1989) Weighted collagen microsponge for immobilising bioactive materials. US Patent, 4,863,856

  • Frondoza C, Sohrabi A, Hungerford D (1996) Human chondrocytes proliferate and produce matrix components in microcarrier suspension culture. Biomaterials 17:879–888

    Article  CAS  Google Scholar 

  • Gilbert J (1998) Current treatment options for the restoration of articular cartilage. Am J Knee Surg 11:42–46

    CAS  Google Scholar 

  • Glattauer V, White JF, Tsai W-B, Tsai C-C, Tebb TA, Werkmeister JA, Ramshaw JAM (2004) Preparation and properties of extra-cellular matrix-based beads for spinner culture. In: Proceedings 28th Annual Scientific Conference of the Matrix Biology Society of Australia & New Zealand, Rottnest Island, Western Australia 2004; s22. ISBN 0 9585892 5 9

  • Grohn P, Kloch G, Zimmermann U (1997) Collagen-coated Ba2+-alginate microcarriers for the culture of anchorage-dependent mammalian cells. BioTechniques 22:970–975

    CAS  Google Scholar 

  • Henderson I, Francisco R, Oakes B, Cameron J (2005) Autologous chondrocyte implantation for treatment of focal chondral defects of the knee—a clinical, arthroscopic, MRI and histologic evaluation at 2 years. Knee 12:209–216

    Google Scholar 

  • Hsu FY, Tsai S-W, Wang FF, Wang YJ (2000) The collagen-containing alginate/poly(lysine)/alginate microcapsules. Art Cells Blood Subs Immob Biotech 28:147–154

    CAS  Google Scholar 

  • Hunziker EB (2001) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10:432–463

    Article  Google Scholar 

  • Iwamoto S, Nakagawa K, Sugiura S, Nakajima M (2002) Preparation of gelatin microbeads with a narrow size distribution using microchannel emulsification. AAPS Pharma Sci Tech 3:E25

    Article  Google Scholar 

  • Izuta Y, Ochi M, Adachi N, Deie M, Yamasaki T, Shinomiya R (2005) Meniscal repair using bone marrow-derived mesenchymal stem cells: experimental study using green fluorescent protein transgenic rats. Knee 12:217–223

    Google Scholar 

  • King D (1936) The healing of semilunar cartilages. J Bone Joint Surg 18:333

    Google Scholar 

  • Kleinman HR, Klebe R, Martin GR (1981) Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol 88:473–485

    Article  CAS  Google Scholar 

  • Kwon YJ, Peng CA (2002) Calcium-alginate gel bead cross-linked with gelatin as microcarrier for anchorage-dependent cell culture. BioTechniques 33:212–214

    CAS  Google Scholar 

  • Majmudar G, Bole D, Goldstein SA, Bonadio J (1991) Bone cell culture in a three-dimensional polymer bead stabilizes the differentiated phenotype and provides evidence that osteoblastic cells synthesize type III collagen and fibronectin. J Bone Miner Res 6:869–881

    Article  CAS  Google Scholar 

  • Malda J, van Blitterswijk CA, Grojec M, Martens DE, Tramper J, Riesle J (2003) Expansion of bovine chondrocytes on microcarriers enhances redifferentiation. Tissue Eng 9:939–948

    Article  CAS  Google Scholar 

  • Miller EJ, Rhodes RK (1982) Preparation and characterisation of the different types of collagens. Method Enzymol 82:33–64

    Article  CAS  Google Scholar 

  • Nakata K, Shino K, Hamada M, Mae T, Miyama T, Shinjo H, Horibe S, Tada K, Ochi T, Yoshikawa H (2001) Human meniscus cell. Characterisation of the primary culture and use for tissue engineering. Clin Orthopaed Rel Res 391S:s208–s218

    Article  Google Scholar 

  • Overstreet M, Sohrabi A, Polotsky A, Hungerford D, Frondoza CG (2003) Collagen microcarrier spinner culture promotes osteoblast proliferation and synthesis of matrix proteins. In Vitro Cell Dev Biol - Animal 39:228–234

    Article  CAS  Google Scholar 

  • Poole CA, Ayad S, Gilbert RT (1992) Chondrons from articular cartilage—V. Imunohistochemical evaluation of type VI collagen organization in isolated chondrons by light, confocal and electron microscopy. J Cell Sci 103:1101–1110

    CAS  Google Scholar 

  • Ramshaw JAM, Werkmeister JA, Glattauer V (1995) Collagen-based biomaterials. Biotechnol Gen Eng Rev 13:335–382

    Google Scholar 

  • Sorrell JM, Caterson B (1989) Detection of age-related changes in the distributions of keratan sulfates and chondroitin sulfates in developing chick limbs; an immunocytochemical study. Development 106:657–663

    CAS  Google Scholar 

  • Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21:431–440

    Article  CAS  Google Scholar 

  • Thissen H, Chang K-Y, Tebb TA, Tsai W-B, Glattauer V, Ramshaw JAM, Werkmeister JA (2005) Synthetic biodegradable microparticles for articular cartilage tissue engineering. J Biomed Mater Res 77A:590–598

    Article  CAS  Google Scholar 

  • von der Mark K, Gauss V, von der Mark H, Muller P (1977) Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 267:531–532

    Article  Google Scholar 

  • Werkmeister JA, Tebb TA, White JF, Ramshaw JAM (1993) Monoclonal antibodies to type VI collagen demonstrate new tissue augmentation of a collagen-based biomaterial implant. J Histochem Cytochem 41:1701–1706

    CAS  Google Scholar 

  • Werkmeister JA, Tsai W-B, Ramshaw JAM, Thissen HW, Chang K-Y (2002) Methods and devices for tissue repair. Patent WO 02/062357-A1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome A. Werkmeister.

Additional information

Tracy A. Tebb, Shiao-Wen Tsai, Veronica Glattauer and Jacinta F. White have made equal contributions to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tebb, T.A., Tsai, SW., Glattauer, V. et al. Development of porous collagen beads for chondrocyte culture. Cytotechnology 52, 99–106 (2006). https://doi.org/10.1007/s10616-006-9034-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-006-9034-3

Keywords

Navigation