Skip to main content

Advertisement

Log in

Insulin secretion dynamics of free and alginate-encapsulated insulinoma cells

  • Original Paper
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

This study investigates the effect of alginate/poly-l-lysine/alginate (APA) encapsulation on the insulin secretion dynamics exhibited by an encapsulated cell system. Experiments were performed with the aid of a home-built perfusion apparatus providing a 1 min temporal resolution. Insulin profiles were measured from: (i) murine insulinoma βTC3 cells encapsulated in calcium alginate/poly-l-lysine/alginate (APA) beads generated with high guluronic (G) or high mannuoric (M) content alginate, and (ii) murine insulinoma βTC-tet cells encapsulated in high M APA beads and propagated in the presence and absence of tetracycline. Results show that encapsulation in APA beads did not affect the insulin secretion profile shortly post-encapsulation. However, remodeling of the beads due to cell proliferation affected the insulin secretion profiles; and inhibiting remodeling by suppressing cell growth preserved the secretion profile. The implications of these findings regarding the in vivo function of encapsulated insulin secreting cells are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Black SP, Constantinidis I, Tucker-Burden C, Cui H, Weber CJ, Safley SA (2006) Immune responses to an encapsulated allogeneic islet ß cell lines in diabetic NOD mice. Biochem Biophys Res Commun 340:236–243

    Article  CAS  Google Scholar 

  • Bratanova-Tochkova TK, Cheng H, Daniel S, Gunawardana S, Liu YJ, Mulvaney-Musa J, Schermerhorn T, Straub SG, Yajima H, Sharp GW (2002) Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion. Diabetes 51(Suppl 1):S83–S90

    CAS  Google Scholar 

  • Chicheportiche D, Reach G (1988) In vitro kinetics of insulin release by microencapsulated rat islets: effect of the size of the microcapsules. Diabetologia 31:54–57

    CAS  Google Scholar 

  • Constantinidis I, Rask I, Long RC Jr, Sambanis A (1999) Effects of alginate composition on the metabolic, secretory, and growth characteristics of entrapped βTC3 mouse insulinoma cells. Biomaterials 20:2019–2027

    Article  CAS  Google Scholar 

  • de Haan BJ, Faas MM, de Vos P (2003) Factors influencing insulin secretion from encapsulated islets. Cell Transplant 12:617–625

    Google Scholar 

  • de Vos P, Hamel AF, Tatarkiewicz K (2002) Considerations for successful transplantation of encapsulated pancreatic islets. Diabetologia 45:159–173

    Article  Google Scholar 

  • Efrat S, Fusco-DeMane D, Lemberg H, al Emran O, Wang X (1995) Conditional transformation of a pancreatic beta-cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. Proc Natl Acad Sci U S A 92:3576–3580

    Article  CAS  Google Scholar 

  • Efrat S, Linde S, Kofod H, Spector D, Delannoy M, Grant S, Hanahan D, Baekkeskov S (1988) Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci U S A 85:9037–9041

    Article  CAS  Google Scholar 

  • Fritschy WM, Wolters GHJ, van Schilfgaarde R (1991) Effect of alginate-polylysine-alginate microencapsulation on in vitro insulin release from rat pancreatic islets. Diabetes 40:37–43

    CAS  Google Scholar 

  • Henquin JC, Ishiyama N, Nenquin M, Ravier MA, Jonas JC (2002) Signals and pools underlying biphasic insulin secretion. Diabetes 51(Suppl 1):S60–S67

    CAS  Google Scholar 

  • Lembert N, Wesche J, Petersen P, Zschocke P, Enderle A, Planck H, Ammon HP (2001) Macroencapsulation of rat islets without alteration of insulin secretion kinetics. Exp Clin Endocrinol Diabetes 109:116–119

    Article  CAS  Google Scholar 

  • Narushima M, Kobayashi N, Okitsu T, Tanaka Y, Li SA, Chen Y, Miki A, Tanaka K, Nakaji S, Takei K, Gutierrez AS, Rivas-Carrillo JD, Navarro-Alvarez N, Jun HS, Westerman KA, Noguchi H, Lakey JR, Leboulch P, Tanaka N, Yoon JW (2005) A human beta-cell line for transplantation therapy to control type 1 diabetes. Nat Biotechnol 23:1274–1282

    Article  CAS  Google Scholar 

  • Rasmussen MR, Snabe T, Pedersen LH (2003) Numerical modelling of insulin and amyloglucosidase release from swelling Ca-alginate beads. J Control Release 91:395–405

    Article  CAS  Google Scholar 

  • Sambanis A (2007) Bioartificial pancreas. In: Lanza R, Langer R, Vacanti JP (eds) Principles of tissue engineering. Elsevier/Academic Press (in press)

  • Sambanis A, Papas KK, Flanders PC, Long RC Jr, Kang H, Constantinidis I (1994) Towards the development of a bioartificial pancreas: immunoisolation and NMR monitoring of mouse insulinomas. Cytotechnology 15:351–363

    Article  CAS  Google Scholar 

  • Sambanis A, Tang S-C, Cheng S-Y, Stabler CL, Long RCJ, Constantinidis I (2002) Core technologies in tissue engineering and their application to the bioartificial pancreas. In: Ikada Y, Umakoshi Y, Hotta T (eds) Tissue engineering for therapeutic use 6. Elsevier Boston MA pp 5–18

    Google Scholar 

  • Simpson NE, Grant SC, Gustavsson L, Peltonen VM, Blackband SJ, Constantinidis I (2006) Biochemical consequences of alginate encapsulation: a NMR study of insulin-secreting cells. Biomaterials 27:2577–2586

    Article  CAS  Google Scholar 

  • Simpson NE, Khokhlova N, Oca-Cossio J, McFarlane SS, Simpson CP, Constantinidis I (2005) Effects of regulating conditionally-transformed alginate-entrapped insulin secreting cell lines in vitro. Biomaterials 26:4633–4641

    Article  CAS  Google Scholar 

  • Simpson NE, Stabler CL, Sambanis A, Constantinidis I (2004) The role of the CaCl2-guluronic acid interaction on alginate encapsulated βTC3 cells. Biomaterials 25:2603–2610

    Article  CAS  Google Scholar 

  • Stabler C, Wilks K, Sambanis A, Constantinidis I (2001) The effects of alginate composition on encapsulated betaTC3 cells. Biomaterials 22:1301–1310

    Article  CAS  Google Scholar 

  • Stabler CL, Sambanis A, Constantinidis I (2002) Effects of alginate composition on the growth and overall metabolic activity of betaTC3 cells. Ann N Y Acad Sci 961:130–133

    Article  CAS  Google Scholar 

  • Straub SG, Sharp GWG (2002) Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metab Res Rev 18:451–463

    Article  CAS  Google Scholar 

  • Tal M, Thorens B, Surana M, Fleischer N, Lodish HF, Hanahan D, Efrat S (1992) Glucose transporter isotypes switch in T-antigen-transformed pancreatic beta cells growing in culture and in mice. Mol Cell Biol 12:422–432

    CAS  Google Scholar 

  • Thu B, Bruheim P, Espevik T, Smidsrod O, Soon-Shiong P, Skjak-Braek G (1996a) Alginate polycation microcapsules. I. Interaction between alginate and polycation. Biomaterials 17:1031–1040

    Article  CAS  Google Scholar 

  • Thu B, Bruheim P, Espevik T, Smidsrod O, Soon-Shiong P, Skjak-Braek G (1996b) Alginate polycation mirocapsules. II. Some functional properties. Biomaterials 17:1069–1079

    Article  CAS  Google Scholar 

  • Thu B, Gaserod O, Paus D, Mikkelsen A, Skjak-Braek G, Toffanin R, Vittur F, Rizzo R (2000) Inhomogeneous alginate gel spheres: an assessment of the polymer gradients by synchrotron radiation-induced X-ray emission, magnetic resonance microimaging, and mathematical modeling. Biopolymers 53:60–71

    Article  CAS  Google Scholar 

  • Trivedi N, Keegan M, Steil GM, Hollister-Lock J, Hasenkamp WM, Colton CK, Bonner-Weir S, Weir GC (2001) Islets in alginate macrobeads reverse diabetes despite minimal acute insulin secretory responses. Transplantation 71:203–211

    Article  CAS  Google Scholar 

  • Tziampazis E, Sambanis A (1995) Tissue engineering of a bioartificial pancreas: modeling the cell environment and device function. Biotechnol Prog 11:115–126

    Article  CAS  Google Scholar 

  • Uludag H, de Vos P, Tresco PA (2000) Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 42:29–64

    Article  CAS  Google Scholar 

  • van Schilfgaarde R, de Vos P (1999) Factors influencing the properties and performance of microcapsules for immunoprotection of pancreatic islets. J Mol Med 77:199–205

    Article  Google Scholar 

  • Yang H, Iwata H, Shimizu H, Tagaki T, Tsuji T, Ito F (1994) Comparative studies of in vitro and in vivo function of three different shaped bioartificial pancreases made of agarose hydrogel. Biomaterials 15:113–120

    Article  CAS  Google Scholar 

  • Zimmer Y, Milo-Landesman D, Svetlanov A, Efrat S (1999) Genes induced by growth arrest in a pancreatic beta cell line: identification by analysis of cDNA arrays. FEBS Lett 457:65–70

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from NIH (DK 56980) through a subcontract to Georgia Tech, as well as from the Georgia Tech/Emory Center (GTEC) for the Engineering of Living Tissues, an ERC Program of the National Science Foundation under Award Number EEC-9731643. This financial support is greatly appreciated. Additionally, the authors thank Dr. S. Efrat for providing the βTC3 and βTC-tet cells and Tracey Couse for help with histology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanassios Sambanis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, SY., Constantinidis, I. & Sambanis, A. Insulin secretion dynamics of free and alginate-encapsulated insulinoma cells. Cytotechnology 51, 159–170 (2006). https://doi.org/10.1007/s10616-006-9025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-006-9025-4

Keywords

Navigation