Skip to main content

Advertisement

Log in

Optimisation of the Cellular Metabolism of Glycosylation for Recombinant Proteins Produced by Mammalian Cell Systems

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Many biopharmaceuticals are now produced as secreted glycoproteins from mammalian cell culture. The glycosylation profile of these proteins is essential to ensure structural stability and biological and clinical activity. However, the ability to control the glycosylation is limited by our understanding of the parameters that affect the heterogeneity of added glycan structures. It is clear that the glycosylation process is affected by a number of factors including the 3-dimensional structure of the protein, the enzyme repertoire of the host cell, the transit time in the Golgi and the availability of intracellular sugar-nucleotide donors. From a process development perspective there are many culture parameters that can be controlled to enable a consistent glycosylation profile to emerge from each batch culture. A further, but more difficult goal is to control the culture conditions to enable the enrichment of specific glycoforms identified with desirable biological activities. The purpose of this paper is to discuss the cellular metabolism associated with protein glycosylation and review the attempts to manipulate, control or engineer this metabolism to allow the expression of human glycosylation profiles in producer lines such as genetically engineered Chinese hamster ovary (CHO) cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADCC:

antibody-mediated cytotoxicity

BHK:

baby hamster kidney (cells)

C2GnT:

core 2 GlcNAC transferase (UDP-GlcNAc: Galβ1,3GalNAc-R β1,6-N-acetyl glucosaminyl transferase)

CHO:

Chinese hamster ovary (cells)

CMP:

cytidine monophosphate

DO:

dissolved oxygen

EPO:

erythropoietin

ER:

endoplasmic reticulum

FT:

fucosyl transferase

G0:

agalactosylated glycans

G1:

monogalactosylated glycans

G2:

digalactosylated glycans

GalNAc:

N-acetyl galactosamine

GDM:

GDP mannose 4,6 dehydratase

GDP:

guanosine diphosphate

GFAT:

glutamine: fructose 6-phosphate amidotransferase

GlcNAc:

N-acetyl glucosamine

GnT:

N-acetyl glucosaminyl transferase

HIV:

human immunodeficiency virus

IFN:

interferon

IgG:

immunoglobulin

LAMP:

lysosomal membrane glycoprotein

ManNAc:

N-acetyl mannosamine

mPL-I:

mouse placental lactogen I

NANA:

N-acetyl-neuraminic acid

NGNA:

N-glycolyl-neuraminic acid

OST:

oligosaccharyltransferase

ST:

sialyl transferase

ST3Gal1:

sialyl transferase 3 (CMP-sialic acid: Galβ1,3GalNAc2,3 sialyl transferase)

TIMP:

tissue inhibitors of metalloproteinases

t-PA:

tissue plasminogen activator

UDP:

uridine diphosphate

UTP:

uridine triphosphate

References

  • Allen S., Naim H.Y. and Bulleid N.J. (1995). Intracellular folding of tissue-type plasminogen activator. Effects of disulfide bond formation on N-linked glycosylation and secretion. J. Biol. Chem. 270: 4797–4804

    Article  CAS  Google Scholar 

  • Andersen D.C. (2004). Cell Culture Effects on the Glycosylation of Therapeutic Proteins. Bioprocess International. IBC Life Sciences, Boston

    Google Scholar 

  • Andersen D.C., Bridges T., Gawlitzek M. and Hoy C. (2000). Multiple cell culture factors can affect the glycosylation of Asn-184 in CHO-produced tissue-type plasminogen activator. Biotechnol. Bioeng. 70: 25–31

    Article  CAS  Google Scholar 

  • Andersen D.C. and Goochee C.F. (1994). The effect of cell-culture conditions on the oligosaccharide structures of secreted glycoproteins. Curr. Opin. Biotechnol. 5: 546–549

    Article  CAS  Google Scholar 

  • Andersen D.C. and Goochee C.F. (1995). The effect of ammonia on the O-linked glycosylation of granulocyte colony-stimulating factor produced by Chinese hamster ovary cells. Biotechnol. Bioeng. 47: 96–105

    Article  CAS  Google Scholar 

  • Andersen D.C. and Krummen L. (2002). Recombinant protein expression for therapeutic applications. Curr. Opin. Biotechnol. 13: 117–123

    Article  CAS  Google Scholar 

  • Angata T. and Varki A. (2002). Chemical diversity in the sialic acids and related α-keto acids: an evolutionary perspective. Chem. Rev. 102: 439–469

    Article  CAS  Google Scholar 

  • Apweiler R., Hermjakob H. and Sharon N. (1999). On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta. 1473: 4–8

    CAS  Google Scholar 

  • Backstrom M., Link T., Olson F.J., Karlsson H., Graham R., Picco G., Burchell J., Taylor-Papadimitriou J., Noll T. and Hansson G.C. (2003). Recombinant MUC1 mucin with a breast cancer-like O-glycosylation produced in large amounts in Chinese-hamster ovary cells. Biochem. J. 376: 677–686

    Article  CAS  Google Scholar 

  • Baker K.N., Rendall M.H., Hills A.E., Hoare M., Freedman R.B. and James D.C. (2001). Metabolic control of recombinant protein N-glycan processing in NS0 and CHO cells. Biotechnol. Bioeng. 73: 188–202

    Article  CAS  Google Scholar 

  • Barasch J., Kiss B., Prince A., Saiman L., Gruenert D. and al-Awqati Q. (1991). Defective acidification of intracellular organelles in cystic fibrosis. Nature 352(6330): 70–73

    Article  CAS  Google Scholar 

  • Borys M.C., Linzer D.I. and Papoutsakis E.T. (1993). Culture pH affects expression rates and glycosylation of recombinant mouse placental lactogen proteins by Chinese hamster ovary (CHO) cells. Biotechnology (NY) 11: 720–724

    Article  CAS  Google Scholar 

  • Bragonzi A., Distefano G., Buckberry L.D., Acerbis G., Foglieni C., Lamotte D., Campi G., Marc A., Soria M.R., Jenkins N. and Monaco L. (2000). A new Chinese hamster ovary cell line expressing alpha2,6-sialyltransferase used as universal host for the production of human-like sialylated recombinant glycoproteins. Biochim. Biophys. Acta. 1474(3): 273–282

    CAS  Google Scholar 

  • Breton C., Oriol R. and Imberty A. (1998). Conserved structural features in eukaryotic and prokaryotic fucosyltransferases. Glycobiology 8: 87–94

    Article  CAS  Google Scholar 

  • Butler M. (2004). Animal Cell Culture and Technology. Bios Scientific, Oxford

    Google Scholar 

  • Butler M., Quelhas D., Critchley A.J., Carchon H., Hebestreit H.F., Hibbert R.G., Vilarinho L., Teles E., Matthijs G., Schollen Argibay P., Harvey D.J., Dwek R.A., Jaeken J. and Rudd P.M. (2003). Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific enzyme defect andcoupled with proteomics, provides an insight into pathogenesis. Glycobiology 13: 601–622

    Article  CAS  Google Scholar 

  • Butler M. and Spier R.E. (1984). The effects of glutamine utilisation and ammonia production on the growth of BHK cells in microcarrier cultures. J. Biotechnol. 1: 187–196

    Article  CAS  Google Scholar 

  • Chee Furng Wong D., Tin Kam Wong K., Tang Goh L., Kiat Heng C. and Gek Sim Yap M. (2005). Impact of dynamic online fed-batch strategies on metabolismproductivity and N-glycosylation quality in CHO cell cultures. Biotechnol. Bioeng. 89: 164–177

    Article  CAS  Google Scholar 

  • Chotigeat W., Watanapokasin Y., Mahler S. and Gray P.P. (1994). Role of environmental conditions on the expression levels, glycoform pattern and levels of sialyltransferase for hFSH produced by recombinant CHO cells. Cytotechnology 15: 217–221

    Article  CAS  Google Scholar 

  • Clark K.J., Griffiths J., Bailey K.M. and Harcum S.W. (2005). Gene-expression profiles for five key glycosylation genes for galactose-fed CHO cells expressing recombinant IL-4/13 cytokine trap. Biotechnol. Bioeng. 90: 568–577

    Article  CAS  Google Scholar 

  • Curling E.M., Hayter P.M., Baines A.J., Bull A.T., Gull K., Strange P.G. and Jenkins N. (1990). Recombinant human interferon-gamma. Differences in glycosylation and proteolytic processing lead to heterogeneity in batch culture. Biochem. J. 272: 333–337

    CAS  Google Scholar 

  • Davidson S.K. and Hunt L.A. (1985). Sindbis virus glycoproteins are abnormally glycosylated in Chinese hamster ovary cells deprived of glucose. J. Gen. Virol. 66: 1457–1468

    Article  CAS  Google Scholar 

  • Davies J., Jiang L., Pan L.Z., LaBarre M.J., Anderson D. and Reff M. (2001). Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Biotechnol. Bioeng. 74: 288–294

    Article  CAS  Google Scholar 

  • Dawson G., Moskal J.R. and Dawson S.A. (2004). Transfection of 2,6 and 2,3-sialyltransferase genes and GlcNAc-transferase genes into human glioma cell line U-373 MG affects glycoconjugate expression and enhances cell death. J. Neurochem. 89(6): 1436–1444

    Article  CAS  Google Scholar 

  • Doyle C. and Butler M. (1990). The effect of pH on the toxicity of ammonia to a murine hybridoma. J. Biotechnol. 15: 91–100

    Article  CAS  Google Scholar 

  • Egrie J.C., Dwyer E., Browne J.K., Hitz A. and Lykos M.A. (2003). Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp. Hematol. 31: 290–299

    Article  CAS  Google Scholar 

  • Ellgaard L. and Helenius A. (2003). Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 4(3): 181–191

    Article  CAS  Google Scholar 

  • Erbayraktar S., Grasso G., Sfacteria A., Xie Q.W., Coleman T., Kreilgaard M., Torup L., Sager T., Erbayraktar Z., Gokmen N., Yilmaz O., Ghezzi P., Villa P., Fratelli M., Casagrande S., Leist M., Helboe L., Gerwein J., Christensen S., Geist M.A., Pedersen L.O., Cerami-Hand C., Wuerth J.P., Cerami A. and Brines M. (2003). Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc. Natl. Acad. Sci. U S A 100: 6741–6746

    Article  CAS  Google Scholar 

  • Follstad B.D. 2004. A Method for Increasing Glycoprotein Sialylation in Mammalian Cells. Cell Culture Engineering IX Poster.

  • Freeze H.H.J. (2002). Sweet solution: sugars to the rescue. Cell Biol. 158: 615–616

    Article  CAS  Google Scholar 

  • Gavel Y. (1990). Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng. 3(5): 433–442

    Article  CAS  Google Scholar 

  • Gawlitzek M., Valley U., Nimtz M., Wagner R. and Conradt H.S. (1995). Characterization of changes in the glycosylation pattern of recombinant proteins from BHK-21 cells due to different culture conditions. J. Biotech. 42: 117–131

    Article  CAS  Google Scholar 

  • Gawlitzek M., Valley U. and Wagner R. (1998). Ammonium ion and glucosamine dependent increases of oligosaccharide complexity in recombinant glycoproteins secreted from cultivated BHK-21 cells. Biotechnol. Bioeng. 57: 518–528

    Article  CAS  Google Scholar 

  • Goochee C.F. 1992. Bioprocess factors affecting glycoprotein oligosaccharide structure. Dev. Biol. Stand. 76: 95–104.Review.

    Google Scholar 

  • Goto M., Akai K., Murakami A., Hashimoto C., Tsuda E., Ueda M., Kawanishi G., Takahashi N., Ishimoto A., Chiba H. and Sasaki R. (1988). Production of recombinant human erythropoietin in mammalian cells: Host–cell dependency of the biological activity of the cloned glycoprotein. Bio/Technology 6: 67–71

    Article  CAS  Google Scholar 

  • Grabenhorst E., Hoffmann A., Nimtz M., Zettlmeissl G. and Conradt H.S. (1995). Construction of stable BHK-21 cells coexpressing human secretory glycoprotein and human Gal (β1–4)GlcNAc-R α2,6-sialyltransferase. Eur. J. Biochem. 232: 718–725

    Article  CAS  Google Scholar 

  • Grammatikos S.I., Valley U., Nimtz M., Conradt H.S. and Wagner R. (1998). Intracellular UDP-N-acetylhexosamine pool affects N-glycan complexity: a mechanism of ammonium action on protein glycosylation. Biotechnol. Prog. 14: 410–419

    Article  CAS  Google Scholar 

  • Gu X. and Wang D.I. (1998). Improvement of interferon-gamma sialylation in Chinese hamster ovary cell culture by feeding of N-acetylmannosamine. Biotechnol. Bioeng. 58(6): 642–648

    Article  CAS  Google Scholar 

  • Hayter P.M., Curling E.M.A., Baines A.J., Jenkins N., Salmon I., Strange P.G., Tong J.M. and Bull A.T. (1992). Glucose-limited chemostat culture of chinese hamster ovary cells producing recombinant human interferon-γ. Biotechnol. Bioeng. 39: 327–335

    Article  CAS  Google Scholar 

  • Heidemann R., Lutkemeyer D., Buntemeyer H. and Lehmann J. (1998). Effects of dissolved oxygen levels and the role of extra- and intracellular amino acid concentration upon the metabolism of mammalian cell lines during batch and continuous cultures. Cytotechnology 26: 185–197

    Article  CAS  Google Scholar 

  • Hirschberg C.B. (2001). Golgi nucleotide sugar transport and leukocyte adhesion deficiency II. J. Clin. Invest. 108: 3–6

    CAS  Google Scholar 

  • Hokke C.H., Bergwerff A.A., Kamerling J.P., Vliegenthart J.F. and Dedem G.W. (1995). Structural analysis of the sialylated N- and O-linked carbohydrate chains of recombinant human erythropoietin expressed in Chinese hamster ovary cells. Sialylation patterns and branch location of dimeric N-acetyllactosamine units. Eur. J. Biochem. 228: 981–1008

    Article  CAS  Google Scholar 

  • Jan D.C., Petch D.A., Huzel N. and Butler M. (1997). The effect of dissolved oxygen on the metabolic profile of a murine hybridoma grown in serum-free medium in continuous cultures. Biotech. Bioeng. 54: 153–164

    Article  CAS  Google Scholar 

  • Jenkins N. and Curling E.M. (1994). Glycosylation of recombinant proteins: problems and prospects. Enzyme Microb. Technol. 16: 354–364

    Article  CAS  Google Scholar 

  • Jenkins N., Parekh R.B. and James D.C. (1996). Getting the glycosylation right: implications for the biotechnology industry. Nat. Biotechnol. 14: 975–981

    Article  CAS  Google Scholar 

  • Jones M.B., Teng H., Rhee J.K., Lahar N., Baskaran G. and Yarema K.J. (2004). Characterization of the cellular uptake and metabolic conversion of acetylated N-acetylmannosamine (ManNAc) analogues to sialic acids. Biotechnol. Bioeng. 85(4): 394–405

    Article  CAS  Google Scholar 

  • Kagawa Y., Takasaki S., Utsumi J., Hosoi K., Shimizu H., Kochibe N. and Kobata A. (1988). Comparative study of the asparagine-linked sugar chains of natural human interferon-beta 1 and recombinant human interferon-beta 1 produced by three different mammalian cells. J. Biol. Chem. 263: 17508–17515

    CAS  Google Scholar 

  • Kornfeld R. and Kornfeld S. (1985). Assembly of asparagine-linked oligosaccharides. Ann. Rev. Biochem. 54: 631–664

    Article  CAS  Google Scholar 

  • Kunkel J.P., Jan D.C., Jamieson J.C. and Butler M. (1998). Dissolved oxygen concentration in serum-free continuous culture affects N-linked glycosylation of a monoclonal antibody. J. Biotechnol. 62: 55–71

    Article  CAS  Google Scholar 

  • Kunkel J.P., Yan W.Y., Butler M. and Jamieson J.C. 2003. Decreased monoclonal IgG1 galactosylation at reduced dissolved oxygen concentration is not a result of lowered galactosyltransferase activity in vitro. Society for Glycobiology Meeting, San Diego, CA, Glycobiology 13: 875.

  • Leonard C.K., Spellman M.W., Riddle L., Harris R.J., Thomas J.N. and Gregory T.J. (1990). Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J. Biol. Chem. 265: 10373–10382

    CAS  Google Scholar 

  • Longmore G.D. and Schachter H. (1982). Product-identification and substrate-specificity studies of the GDP-l-fucose:2-acetamido-2-deoxy-beta-d-glucoside (FUC goes to Asn-linked GlcNAc) 6-alpha-l-fucosyltransferase in a Golgi-rich fraction from porcine liver. Carbohydr. Res. 100: 365–392

    Article  CAS  Google Scholar 

  • Meynial-Salles I. and Combes D. (1996). J. Biotechnol. 46: 1–14

    Article  CAS  Google Scholar 

  • Miyoshi E., Noda K., Ko J.H., Ekuni A., Kitada T., Uozumi N., Ikeda Y., Matsuura N., Sasaki Y., Hayashi N., Hori M. and Taniguchi N. (1999). Overexpression of alpha 1–6 fucosyltransferase in hepatoma cells suppresses intrahepatic metastasis after splenic injection in athymic mice. Cancer Res. 59: 2237–2243

    CAS  Google Scholar 

  • Nabi I.R. and Dennis J.W. (1998). The extent of polylactosamine glycosylation of MDCK LAMP-2 is determined by its Golgi residence time. Glycobiology 8: 947–953

    Article  CAS  Google Scholar 

  • Narhi L.O., Arakawa T., Aoki K.H., Elmore R., Rohde M.F., Boone T. and Strickland T.W. (1991). The effect of carbohydrate on the structure and stability of erythropoietin. J. Biol. Chem. 266: 23022–23026

    CAS  Google Scholar 

  • Noda K., Miyoshi E., Uozumi N., Gao C.X., Suzuki K., Hayashi N., Hori M. and Taniguchi N. (1998). High expression of alpha-1–6 fucosyltransferase during rat hepatocarcinogenesis. Int. J. Cancer. 75: 444–450

    Article  CAS  Google Scholar 

  • Nyberg G.B., Balcarcel R.R., Follstad B.D., Stephanopoulos G. and Wang D.I. (1999). Metabolic effects on recombinant interferon-gamma glycosylation in continuous culture of Chinese hamster ovary cells. Biotechnol. Bioeng. 62: 336–347

    Article  CAS  Google Scholar 

  • Ohyama C., Smith P.L., Angata K., Fukuda M.N., Lowe J.B. and Fukuda M. (1998). Molecular cloning and expression of GDP-d-mannose-4,6-dehydratasea key enzyme for fucose metabolism defective in Lec13 cells. J. Biol. Chem. 273: 14582–14587

    Article  CAS  Google Scholar 

  • Okazaki A., Shoji-Hosaka E., Nakamura K., Wakitani M., Uchida K., Kakita S., Tsumoto K., Kumagai I. and Shitara K. (2004). Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and Fcgamma, RIIIa. J. Mol. Biol. 336: 1239–1249

    Article  CAS  Google Scholar 

  • Pels Rijcken W.R., Overdijk B. and Ferwerda W. (1995). The effect of increasing nucleotide-sugar concentrations on the incorporation of sugars into glycoconjugates in rat hepatocytes. Biochem. J. 305: 865–870

    CAS  Google Scholar 

  • Perlman S., Christiansen J., Gram-Nielsen S., Jeppesen C.B., Andersen K.V., Halkier T., Okkels S. and Schambye H.T. (2003). Glycosylation of an N-terminal extension prolongs the half-life and increases the in vivo activity of follicle stimulating hormone. J. Clin. Endocrinol. Metab. 88: 3227–3235

    Article  CAS  Google Scholar 

  • Petrescu A.J., Milac A.L., Petrescu S.M., Dwek R.A. and Wormald M.R. (2004). Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structureand folding. Glycobiology 14: 103–114

    Article  CAS  Google Scholar 

  • Prati E.G., Matasci M., Suter T.B., Dinter A., Sburlati A.R. and Bailey J.E. (2000). Engineering of coordinated up- and down-regulation of two glycosyltransferases of the O-glycosylation pathway in Chinese hamster ovary (CHO) cells. Biotechnol. Bioeng. 68(3): 239–244

    Article  CAS  Google Scholar 

  • Rademacher T.W., Jaques A. and Williams P.J. (1996). The defining characteristics of immunoglobulin glycosylation. In: Isenberg, D.A. and Rademacher, T.W. (eds) Abnormalities of IgG Glycosylation and Immunological Disorders, pp 1–44. publ. Wiley, NY

    Google Scholar 

  • Raju T.S., Briggs J.B., Borge S.M. and Jones A.J. (2000). Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10: 477–486

    Article  CAS  Google Scholar 

  • Raju T.S., Briggs J.B., Chamow S.M., Winkler M.E. and Jones A.J. (2001). Glycoengineering of therapeutic glycoproteins: in vitro galactosylation and sialylation of glycoproteins with terminal N-acetylglucosamine and galactose residues. Biochemistry 40: 8868–8876

    Article  CAS  Google Scholar 

  • Rearick J.I., Chapman A. and Kornfeld S. (1981). Glucose starvation alters lipid-linked oligosaccharide biosynthesis in Chinese hamster ovary cells. J. Biol. Chem. 256: 6255–6261

    CAS  Google Scholar 

  • Restelli V. and Butler M. (2002). The effect of cell culture parameters on protein glycosylation. In: Al-Rubeai, M (eds) Glycosylation, vol 3, pp 61–92. Kluwer, Dordrecht

    Google Scholar 

  • Reuter G. and Gabius H.J. 1999. Eukaryotic glycosylation: whim of nature or multipurpose tool? Cell Mol. Life Sci. 55: 368–422.Review.

    Google Scholar 

  • Rijcken P.W.R., Overdijk B. and Ferwerda W. (1995). The effect of increasing nucleotide-sugar concentrations on the incorporation of sugars into glycoconjugates in rat hepatocytes. Biochem. J. 305: 865–870

    Google Scholar 

  • Rothman R.J., Warren L., Vliegenthart J.F. and Hard K.J. (1989). Clonal analysis of the glycosylation of immunoglobulin G secreted by murine hybridomas. Biochemistry 28: 1377–1384

    Article  CAS  Google Scholar 

  • Rudd P.M. and Dwek R.A. (1997). Glycosylation: heterogeneity and the 3D structure of proteins. Critical Rev. Biochem. Mol. Biol. 32: 1–100

    Article  CAS  Google Scholar 

  • Saitoh A., Aoyagi Y. and Asakura H. (1993). Structural analysis on the sugar chains of human alpha 1-antitrypsin: presence of fucosylated biantennary glycan in hepatocellular carcinoma. Arch. Biochem. Biophys. 303: 281–287

    Article  CAS  Google Scholar 

  • Sburlati A.R., Umana P., Prati E.G. and Bailey J.E. (1998). Synthesis of bisected glycoforms of recombinant IFN-beta by overexpression of beta-1,4-N-acetylglucosaminyltransferase III in Chinese hamster ovary cells. Biotechnol. Prog. 14(2): 189–192

    Article  CAS  Google Scholar 

  • Schweikart F., Jones R., Jaton J.C. and Hughes G.J. (1999). Rapid structural characterisation of a murine monoclonal IgA alpha chain: heterogeneity in the oligosaccharide structures at a specific site in samples produced in different bioreactor systems. J. Biotechnol. 69: 191–201

    Article  CAS  Google Scholar 

  • Sears P. and Wong C.H.. (1998). Enzyme action in glycoprotein synthesis. Cell. Mol. Life Sci. 54: 223–252

    Article  CAS  Google Scholar 

  • Seppala R., Lehto V.P. and Gahl W.A. (1999). Mutations in the human UDP-N-acetylglucosamine 2-epimerase gene define the disease sialuria and the allosteric site of the enzyme. Am. J. Hum. Genet. 64: 1563–1569

    Article  CAS  Google Scholar 

  • Sheeley D.M., Merrill B.M. and Taylor L.C. (1997). Characterization of monoclonal antibody glycosylation: comparison of expression systems and identification of terminal alpha-linked galactose. Anal. Biochem. 247: 102–110

    Article  CAS  Google Scholar 

  • Shelikoff M., Sinskey A.J. and Stephanopoulos G. (1994). The effect of protein synthesis inhibitors on the glycosylation site occupancy of recombinant human prolactin. Cytotechnology 15: 195–208

    Article  CAS  Google Scholar 

  • Shields R.L., Lai J., Keck R., Oȁ9Connell L.Y., Hong K., Meng Y.G., Weikert S.H. and Presta L.G. (2002). Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277: 26733–26740

    Article  CAS  Google Scholar 

  • Shinkawa T., Nakamura K., Yamane N., Shoji-Hosaka E., Kanda Y., Sakurada M., Uchida K., Anazawa H., Satoh M., Yamasaki M., Hanai N. and Shitara K. (2003). The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278: 3466–3473

    Article  CAS  Google Scholar 

  • Shriver Z., Raguram S. and Sasisekharan R. (2004). Glycomics: a pathway to a class of new and improved therapeutics. Nat. Rev. Drug Discov. 3: 863–873

    Article  CAS  Google Scholar 

  • Spellman M.W. (1990). Carbohydrate characterization of recombinant glycoproteins of pharmaceutical interest. Anal. Chem. 62: 1714–1722

    Article  CAS  Google Scholar 

  • Srikrishna G., Varki N.M., Newell P.C., Varki A. and Freeze H.H. (1997). An IgG monoclonal antibody against Dictyostelium discoideum glycoproteins specifically recognizes Fucalpha1,6GlcNAcbeta in the core of N-linked glycans. Localized expression of core-fucosylated glycoconjugates in human tissues. J. Biol. Chem. 272: 25743–25752

    Article  CAS  Google Scholar 

  • Stark N.J. and Heath E.C. (1979). Glucose-dependent glycosylation of secretory glycoprotein in mouse myeloma cells. Arch. Biochem. Biophys. 192: 599–609

    Article  CAS  Google Scholar 

  • Storring P.L. (1992). Assaying glycoprotein hormones–the influence of glycosylation on immunoreactivity. Trends Biotechnol. 10: 427–432

    Article  CAS  Google Scholar 

  • Stubbs H.J., Lih J.J., Gustafson T.L. and Rice K.G. (1996). Influence of core fucosylation on the flexibility of a biantennary N-linked oligosaccharide. Biochemistry 35: 937–947

    Article  CAS  Google Scholar 

  • Sturla L., Etzioni A., Bisso A., Zanardi D., Silengo L. and Tonetti M. (1998). Defective intracellular activity of GDP-d-mannose-4,6-dehydratase in leukocyte adhesion deficiency type II syndrome. FEBS Lett. 429: 274–278

    Article  CAS  Google Scholar 

  • Tachibana H., Kim J. and Shivahata S. (1997). Building high affinity human antibodies by altering the glycosylation on the light chain variable region in N-acetyl glucosamine-supplemented hybridoms cultures. Cytotechnology 23: 151–159

    Article  CAS  Google Scholar 

  • Takahashi T., Ikeda Y., Miyoshi E., Yaginuma Y., Ishikawa M. and Taniguchi N. (2000). Alpha1,6fucosyltransferase is highly and specifically expressed in human ovarian serous adenocarcinomas. Int. J. Cancer. 88: 914–919

    Article  CAS  Google Scholar 

  • Takeuchi M., Takasaki S., Miyazaki H., Kato T., Hoshi S., Kochibe N. and Kobata A. (1988). Comparative study of the asparagine-linked sugar chains of human erythropoietins purified from urine and the culture medium of recombinant Chinese hamster ovary cells. J. Biol. Chem. 263: 3657–3663

    CAS  Google Scholar 

  • Thotakura N.R., Desai R.K., Bates L.G., Cole E.S., Pratt B.M. and Weintraub B.D. (1991). Biological activity and metabolic clearance of a recombinant human thyrotropin produced in Chinese hamster ovary cells. Endocrinology 128: 341–348

    Article  CAS  Google Scholar 

  • Tonetti M., Sturla L., Bisso A. and Benatti U. (1996). Synthesis of GDP-l-fucose by the human FX protein. J. Biol. Chem. 271: 27274–27279

    Article  CAS  Google Scholar 

  • Umana P. and Bailey J.E. (1997). A mathematical model of N-linked glycoform biosynthesis. Biotechnol. Bioeng. 55: 890–908

    Article  CAS  Google Scholar 

  • Umana P., Jean-Mairet J., Moudry R., Amstutz H. and Bailey J.E. (1999). Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol. 17: 176–180

    Article  CAS  Google Scholar 

  • Uozumi N., Yanagidani S., Miyoshi E., Ihara Y., Sakuma T., Gao C.X., Teshima T., Fujii S., Shiba T. and Taniguchi N. (1996). Purification and cDNA cloning of porcine brain GDP-L-Fuc:N-acetyl-beta-d-glucosaminide alpha 1–6 fucosyltransferase. J. Biol. Chem. 271: 27810–27817

    Article  CAS  Google Scholar 

  • Valley U., Nimtz M., Conradt H.S. and Wagner R. (1999). Incorporation of ammonium into intracellular UDP-activated N-acetylhexosamines and into carbohydrate structures in glycoproteins. Biotechnol. Bioeng. 64(4): 401–417

    Article  CAS  Google Scholar 

  • Rudd P.M., Dwek R.A. and Opdenakker G. (1998). Concepts and principles of O-linked glycosylation. Crit. Rev. Biochem. Mol. Biol. 33(3): 151–208

    Article  Google Scholar 

  • Voynow J.A., Kaiser R.S., Scanlin T.F. and Glick M.C. (1991). Purification and characterization of GDP-l-fucose-N-acetyl beta-d-glucosaminide alpha 1–6 fucosyltransferase from cultured human skin fibroblasts. Requirement of a specific biantennary oligosaccharide as substrate. J. Biol. Chem. 266: 21572–21577

    CAS  Google Scholar 

  • Walmsley A.R. and Hooper N.M. (2003). Glycosylation efficiency of Asn-Xaa-Thr sequons is independent of distance from the C-terminus in membrane dipeptidase. Glycobiology 13(9): 641–646

    Article  CAS  Google Scholar 

  • Wang W.C., Lee N., Aoki D., Fukuda M.N. and Fukuda M. (1991). The poly-N-acetyllactosamines attached to lysosomal membrane glycoproteins are increased by the prolonged association with the Golgi complex. J. Biol. Chem. 266: 23185–23190

    CAS  Google Scholar 

  • Wang W., Li W., Ikeda Y., Miyagawa J.I., Taniguchi M., Miyoshi E., Sheng Y., Ekuni A., Ko J.H., Yamamoto Y., Sugimoto T., Yamashita S., Matsuzawa Y., Grabowski G.A., Honke K. and Taniguchi N. (2001). Ectopic expression of alpha1,6 fucosyltransferase in mice causes steatosis in the liver and kidney accompanied by a modification of lysosomal acid lipase. Glycobiology 11: 165–174

    Article  CAS  Google Scholar 

  • Wasley L.C., Timony G., Murtha P., Stoudemire J., Dorner A.J., Caro J., Krieger M. and Kaufman R.J. (1991). Blood 77: 2624–2632

    CAS  Google Scholar 

  • Weikert S., Papac D., Briggs J., Cowfer D., Tom S., Gawlitzek M., Lofgren J., Mehta S., Chisholm V., Modi N., Eppler S., Carroll K., Chamow S., Peers D., Berman P. and Krummen L. (1999). Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat. Biotechnol. 17: 1116–1121

    Article  CAS  Google Scholar 

  • Weiss P. and Ashwell G. (1989). The asialoglycoprotein receptor: properties and modulation by ligand. Prog. Clin. Biol. Res. 300: 169–184

    CAS  Google Scholar 

  • Wormald M.R., Rudd P.M., Harvey D.J., Chang S.C., Scragg I.G. and Dwek R.A. (1997). Variations in oligosaccharide-protein interactions in immunoglobulin G determine the site-specific glycosylation profiles and modulate the dynamic motion of the Fc oligosaccharides. Biochemistry 36: 1370–1380

    Article  CAS  Google Scholar 

  • Xie L. and Wang D.I. (1997). Integrated approaches to the design of media and feeding strategies for fed-batch cultures of animal cells. Trends Biotechnol. 15: 109–113

    Article  CAS  Google Scholar 

  • Yamashita K., Koide N., Endo T., Iwaki Y. and Kobata A. (1989). Altered glycosylation of serum transferring of patients with hepatocellular carcinoma. J. Biol. Chem. 264: 2415–2423

    CAS  Google Scholar 

  • Yan A. and Lennarz W.J. (2005). Unraveling the mechanism of protein N-glycosylation. J. Biol. Chem. 280: 3121–3124

    Article  CAS  Google Scholar 

  • Yanagidani S., Uozumi N., Ihara Y., Miyoshi E., Yamaguchi N. and Taniguchi N. (1997). Purification and cDNA cloning of GDP-l-Fuc:N-acetyl-beta-d-glucosaminide:alpha1–6 fucosyltransferase (alpha1–6 FucT) from human gastric cancer MKN45 cells. J. Biochem. 121: 626–632

    CAS  Google Scholar 

  • Yang M. and Butler M. (2000). Effects of ammonia on CHO cell growtherythropoietin production and glycosylation. Biotechnol. Bioeng. 68: 370–380

    Article  CAS  Google Scholar 

  • Zanghi J.A., Mendoza T.P., Knop R.H. and Miller W.M. (1998). Ammonia inhibits neural cell adhesion molecule polysialylation in Chinese hamster ovary and small cell lung cancer cells. J. Cell Physiol. 177: 248–263

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Butler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, M. Optimisation of the Cellular Metabolism of Glycosylation for Recombinant Proteins Produced by Mammalian Cell Systems. Cytotechnology 50, 57–76 (2006). https://doi.org/10.1007/s10616-005-4537-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-005-4537-x

Keywords

Navigation