Skip to main content
Log in

Prediction of Unemployment Rates with Time Series and Machine Learning Techniques

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

In this paper, are explored and analyzed time series and machine learning models for prediction of unemployment in several countries (Med, Baltic, Balkan, Nordic, Benelux) for different forecasting horizons. FARIMA is a suitable model when long memory exists in a time series and has been applied successfully for predicting unemployment. To overcome the potential issue of heteroskedasticity, we explore whether FARIMA models with GARCH errors achieve more accurate results. To further improve forecasting accuracy, we consider models with non-normal errors. The above models however cannot take into account the non-linearity of the data and due to this fact, we employ three machine learning techniques to forecast unemployment rates, i.e. fully connected feed forward neural networks, support vector regression and multivariate adaptive regression splines. ARIMA and Holt-Winters are considered as benchmark models. Finally, the effects of different forecasting horizons and different geographic locations in terms of forecasting accuracy of the models are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aas, K., & Hobæk Haff, I. (2005). NIG and skew student’s t: Two special cases of the Generalised Hyperbolic Distribution.

  • Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions with formulas, graphs, and mathematical tables. In National Bureau of Standards Applied Mathematics Series (Vol. 55). Washington, D.C: U.S. Government Printing Office.

  • Aiken, M. (1996). A neural network to predict civilian unemployment rates. Journal of International Information Management,5(1), 3.

    Google Scholar 

  • Baillie, R. T., Chung, C. F., & Tieslau, M. A. (1996). Analysing inflation by the fractionally integrated ARFIMA–GARCH model. Journal of Applied Econometrics,11, 23–40.

    Google Scholar 

  • Barndorff-Nielsen, O. (1977). Exponentially decreasing distributions for the logarithm of particle size. Proceedings of the Royal Society A,353(1674), 401–419.

    Google Scholar 

  • Basak, D., Pal, S., & Patranabis, D. C. (2007). Support vector regression. Neural Information Processing-Letters and Reviews,11(10), 203–224.

    Google Scholar 

  • Blanchard, O. J., & Summers, L. H. (1986). Hysteresis and the European unemployment problem. NBER Macroeconomics Annual,1, 15–78.

    Google Scholar 

  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics,31(3), 307–327.

    Google Scholar 

  • Boné, R., & Crucianu, M. (2002). Multi-step-ahead prediction with neural networks: A review. 9emes Rencontres Internationales: Approches Connexionnistes en Sciences,2, 97–106.

    Google Scholar 

  • Catania, L., & Bernardi, M. (2017). MCS: Model confidence set procedure. R package version 0.1.3.

  • Conover, W. J. (1999). Some tests based on the binomial distribution. Practical nonparametric statistics (3rd ed., pp. 123–178). New York: Wiley.

    Google Scholar 

  • Conover, W. J., & Iman, R. L. (1979). On multiple-comparisons procedures. Los Alamos Sci. Lab. Tech. Rep. LA-7677-MS.

  • Cromwell, J. B. (1994). Multivariate tests for time series models (Vol. 100). Thousand Oaks: Sage.

    Google Scholar 

  • De Gooijer, J. G., Ray, B. K., & Kräger, H. (1998). Forecasting exchange rates using TSMARS. Journal of International Money and Finance,17(3), 513–534.

    Google Scholar 

  • Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research,7, 1–30.

    Google Scholar 

  • Dobre, I., & Alexandru, A. A. (2008). Modelling unemployment rate using Box–Jenkins procedure. Journal of Applied Quantitative Methods,3(2), 156–166.

    Google Scholar 

  • Drucker, H., Burges, C. J., Kaufman, L., Smola, A. J., & Vapnik, V. (1997). Support vector regression machines. In Advances in neural information processing systems, pp. 155–161.

  • Etuk, H., Uchendu, B., & Uyodhu, V. (2012). ARIMA fit to Nigerian unemployment data. Journal of Basic and Applied Scientific Research,2(6), 5964–5970.

    Google Scholar 

  • Floros, C. (2005). Forecasting the UK unemployment rate: Model comparisons. International Journal of Applied Econometrics and Quantitative Studies,2(4), 57–72.

    Google Scholar 

  • Fraley, C., Leisch, F., Maechler, M., Reisen, V., & Lemonte, A. (2012). Fracdiff: Fractionally differenced ARIMA aka ARFIMA (p, d, q) models, R package version, 1.4-2.

  • Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics,19, 1–67.

    Google Scholar 

  • Geweke, J., & Porter-Hudak, S. (1983). The estimation and application of long memory time series models. Journal of Time Series Analysis,4(4), 221–238.

    Google Scholar 

  • Ghalanos, A. (2013). Introduction to the rugarch package. R vignette.

  • Gil-Alana, L. A. (2001). A fractionally integrated exponential model for UK unemployment. Journal of Forecasting,20(5), 329–340.

    Google Scholar 

  • Granger, C. W., & Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis,1(1), 15–29.

    Google Scholar 

  • Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica,79(2), 453–497.

    Google Scholar 

  • Haykin, S. (1999). Neural networks. A comprehensive foundation (2nd ed.). London: Person Education. ISBN 0-13-273350-1.

    Google Scholar 

  • Hollander, M., Wolfe, D. A., & Chicken, E. (2013). Nonparametric statistical methods (Vol. 751). Hoboken: Wiley.

    Google Scholar 

  • Hosking, J. R. (1981). Fractional differencing. Biometrika,68(1), 165–176.

    Google Scholar 

  • Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers,116, 770–799.

    Google Scholar 

  • Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters,6(3), 255–259.

    Google Scholar 

  • Johnes, G. (1999). Forecasting unemployment. Applied Economics Letters,6(9), 605–607.

    Google Scholar 

  • Katris, C. (2015). Dynamics of Greece’s unemployment rate: Effect of the economic crisis and forecasting models. International Journal of Computational Economics and Econometrics,5(2), 127–142.

    Google Scholar 

  • Katris, C. (2019). Forecasting the unemployment of med counties using time series and neural network models. Journal of Statistical andEconometric Methods, 8(2), 37–49.

    Google Scholar 

  • Kurita, T. (2010). A forecasting model for Japan’s unemployment rate. Eurasian Journal of Business and Economics,3(5), 127–134.

    Google Scholar 

  • Lee, T. H., White, H., & Granger, C. W. (1993). Testing for neglected nonlinearity in time series models: A comparison of neural network methods and alternative tests. Journal of Econometrics,56(3), 269–290.

    Google Scholar 

  • Lewis, P. A., & Stevens, J. G. (1991). Nonlinear modeling of time series using multivariate adaptive regression splines (MARS). Journal of the American Statistical Association,86(416), 864–877.

    Google Scholar 

  • Limas, M. C., Mere, J. B. O., Marcos, A. G., Ascacibar, F. J. M., Espinoza, A. V. P., Elias, F. A., & Ramos, J. M. P. (2014). AMORE: A more flexible neural network package. R package version 0.2-15.

  • Lippmann, R. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine,4(2), 4–22.

    Google Scholar 

  • Mandelbrot, B. (1972). Statistical methodology for nonperiodic cycles: From the covariance to R/S analysis. In Annals of economic and social measurement, Vol. 1, No. 3, NBER, pp. 259–290.

  • Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2017). e1071: Misc functions of the department of statistics, probability theory group (formerly: E1071), TU Wien. R package version, 1.6-8.

  • Milborrow, S. (2018). Derived from mda: Mars by Trevor Hastie and Rob Tibshirani. Uses Alan Miller’s Fortran utilities with Thomas Lumley’s leaps wrapper. Earth: Multivariate Adaptive Regression Splines, R package version 4.6.3.

  • Mladenovic, J., Ilic, I., & Kostic, Z. (2017). Modeling the unemployment rate at the eu level by using Box–Jenkins methodology. KnE Social Sciences,1(2), 1–13.

    Google Scholar 

  • Montgomery, A. L., Zarnowitz, V., Tsay, R. S., & Tiao, G. C. (1998). Forecasting the US unemployment rate. Journal of the American Statistical Association,93(442), 478–493.

    Google Scholar 

  • Natrella, M. (2010). NIST/SEMATECH e-handbook of statistical methods. http://www.itl.nist.gov/div898/handbook/.

  • Olmedo, E. (2014). Forecasting spanish unemployment using near neighbour and neural net techniques. Computational Economics,43(2), 183–197.

    Google Scholar 

  • Özmen, A., & Weber, G. W. (2014). RMARS: Robustification of multivariate adaptive regression spline under polyhedral uncertainty. Journal of Computational and Applied Mathematics,259, 914–924.

    Google Scholar 

  • Özmen, A., Weber, G. W., & Batmaz, I. (2010). The new robust CMARS (RCMARS) method. In ISI proceedings of 24th MEC-EurOPT, pp. 362–368.

  • Özmen, A., Weber, G. W., Batmaz, İ., & Kropat, E. (2011). RCMARS: Robustification of CMARS with different scenarios under polyhedral uncertainty set. Communications in Nonlinear Science and Numerical Simulation,16(12), 4780–4787.

    Google Scholar 

  • Pernía-Espinoza, A. V., Ordieres-Meré, J. B., Martínez-de-Pisón, F. J., & González-Marcos, A. (2005). TAO-robust backpropagation learning algorithm. Neural Networks,18(2), 191–204.

    Google Scholar 

  • Proietti, T. (2003). Forecasting the US unemployment rate. Computational Statistics & Data Analysis,42(3), 451–476.

    Google Scholar 

  • Rothman, P. (1998). Forecasting asymmetric unemployment rates. Review of Economics and Statistics,80(1), 164–168.

    Google Scholar 

  • Sapankevych, N. I., & Sankar, R. (2009). Time series prediction using support vector machines: A survey. IEEE Computational Intelligence Magazine,4(2), 24–38.

    Google Scholar 

  • Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing,14(3), 199–222.

    Google Scholar 

  • Sowell, F. (1992). Maximum likelihood estimation of stationaryunivariate fractionally integrated time series models. Journal of econometrics, 53(1–3), 165–188.

    Google Scholar 

  • Stasinakis, C., Sermpinis, G., Theofilatos, K., & Karathanasopoulos, A. (2016). Forecasting US unemployment with radial basis neural networks, Kalman filters and support vector regressions. Computational Economics,47(4), 569–587.

    Google Scholar 

  • Stoklasová, R. (2012). Model of the unemployment rate in the Czech Republic. In Proceedings of 30th international conference on mathematical methods in economics, pp. 836–841.

  • Taqqu, M. S., Teverovsky, V., & Willinger, W. (1995). Estimators for long-range dependence: An empirical study. Fractals,3(04), 785–798.

    Google Scholar 

  • Trafalis, T. B., & Ince, H. (2000). Support vector machine for regression and applications to financial forecasting. In Proceedings of the IEEE-INNS-ENNS international joint conference on neural networks, 2000. IJCNN 2000, Vol. 6, IEEE, pp. 348–353.

  • Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer.

    Google Scholar 

  • Weber, G. W., Batmaz, İ., Köksal, G., Taylan, P., & Yerlikaya-Özkurt, F. (2012). CMARS: A new contribution to nonparametric regression with multivariate adaptive regression splines supported by continuous optimization. Inverse Problems in Science and Engineering,20(3), 371–400.

    Google Scholar 

  • Yüksel, S., & Adalı, Z. (2017). Determining influencing factors of unemployment in Turkey with MARS method. International Journal of Commerce and Finance, 3(2), 25–36.

    Google Scholar 

  • Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting,14(1), 35–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Katris.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

1.1 1-Step Ahead Predictions

See Tables 12 and 13.

Table 12 Positions of models RMSE (MAE)
Table 13 Prediction accuracy

1.2 3-Step Ahead Predictions

See Tables 14 and 15.

Table 14 Prediction accuracy
Table 15 Positions of models RMSE (MAE)

1.3 12-Step Ahead Predictions

See Tables 16 and 17.

Table 16 Prediction accuracy
Table 17 Positions of models RMSE (MAE)

Data for Friedman Tests

2.1 Elements of the Model

Dependent variable # of times where the model is included in the MCS superior set of models.

Factor 1 Horizon (1, 3 and 12 steps ahead).

Factor 2 Geographic area (Balkan, Med, Nordic, Baltic, Benelux).

See Tables 18 and 19.

Table 18 Prediction accuracy
Table 19 # of times where the model is included in the MCS superior set of models

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katris, C. Prediction of Unemployment Rates with Time Series and Machine Learning Techniques. Comput Econ 55, 673–706 (2020). https://doi.org/10.1007/s10614-019-09908-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-019-09908-9

Keywords

Navigation