Advertisement

Quanto Option Pricing with Lévy Models

  • Hasan A. Fallahgoul
  • Young S. Kim
  • Frank J. Fabozzi
  • Jiho Park
Article
  • 75 Downloads

Abstract

We develop a multivariate Lévy model and apply the bivariate model for the pricing of quanto options that captures three characteristics observed in real-world markets for stock prices and currencies: jumps, heavy tails and skewness. The model is developed by using a bottom-up approach from a subordinator. We do so by replacing the time of a Brownian motion with a Lévy process, exponential tilting subordinator. We refer to this model as a multivariate exponential tilting process. We then compare using a time series of daily log-returns and market prices of European-style quanto options the relative performance of the exponential tilting process to that of the Black–Scholes and the normal tempered stable process. We find that, due to more flexibility on capturing the information of tails and skewness, the proposed modeling process is superior to the other two processes for fitting market distribution and pricing quanto options.

Keywords

Quanto option pricing Lévy process Stable and tempered stable process Subordinator 

JEL Classification

C0 C02 C1 

Supplementary material

10614_2018_9807_MOESM1_ESM.pdf (517 kb)
Supplementary material 1 (pdf 516 KB)

References

  1. Abdul-Hamid, H., & Nolan, J. P. (1998). Multivariate stable densities as functions of one dimensional projections. Journal of Multivariate Analysis, 67, 80–89.CrossRefGoogle Scholar
  2. Anderson, T. W., & Darling, D. A. (1954). A test of goodness of fit. Journal of the American Statistical Association, 49, 765–769.CrossRefGoogle Scholar
  3. Ané, T., & Geman, H. (2000). Order flow, transaction clock, and normality of asset returns. Journal of Finance, 55, 2259–2284.CrossRefGoogle Scholar
  4. Bakshi, G., Cao, C., & Chen, Z. (1997). Empirical performance of alternative option pricing models. Journal of Finance, 52, 2003–2049.CrossRefGoogle Scholar
  5. Ballotta, L., Deelstra, G., & Rayée, G. (2017). Multivariate FX models with jumps: Triangles, quantos and implied correlation. European Journal of Operational Research, 260, 1181–1199.CrossRefGoogle Scholar
  6. Barndorff-Nielsen, O. E., & Shephard, N. (2001a). Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. Journal of the Royal Statistical Society: Series B, 63, 167–241.CrossRefGoogle Scholar
  7. Barndorff-Nielsen, O. E., & Shephard, N. (2001b). Normal modified stable processes. Theory of Probability and Mathematical Statistics, 1, 1–19.Google Scholar
  8. Barndorff-Nielsen, O. E., & Shiryaev, A. N. (2010). Change of time and change of measure, 13. Singapore: World Scientific Press.CrossRefGoogle Scholar
  9. Barone-Adesi, G., Engle, R. F., & Mancini, L. (2008). A GARCH option pricing model with filtered historical simulation. Review of Financial Studies, 21, 1223–1258.CrossRefGoogle Scholar
  10. Bates, D. S. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options. Review of Financial Studies, 9, 69–107.CrossRefGoogle Scholar
  11. Bates, D. S. (2012). US stock market crash risk, 1926–2010. Journal of Financial Economics, 105, 229–259.CrossRefGoogle Scholar
  12. Baxter, M., & Rennie, A. (1996). Financial calculus: An introduction to derivative pricing. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  13. Bianchi, M. L., Rachev, S. T., Kim, Y. S., & Fabozzi, F. J. (2011). Tempered infinitely divisible distributions and processes. SIAM Theory of Probability and Its Applications, 55, 2–26.CrossRefGoogle Scholar
  14. Bianchi, M. L., Tassinari, G. L., & Fabozzi, F. J. (2016). Riding with the four horsemen and the multivariate normal tempered stable model. International Journal of Theoretical and Applied Finance, 19, 1650027.CrossRefGoogle Scholar
  15. Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–654.CrossRefGoogle Scholar
  16. Carr, P., Geman, H., Madan, D. B., & Yor, M. (2003). Stochastic volatility for Lévy processes. Mathematical Finance, 13, 345–382.CrossRefGoogle Scholar
  17. Chernov, M., & Ghysels, E. (2000). A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation. Journal of Financial Economics, 56, 407–458.CrossRefGoogle Scholar
  18. Christoffersen, P., Jacobs, K., Ornthanalai, C., & Wang, Y. (2008). Option valuation with long-run and short-run volatility components. Journal of Financial Economics, 90, 272–297.CrossRefGoogle Scholar
  19. Clark, P. K. (1973). A subordinated stochastic process model with finite variance for speculative prices. Econometrica, 41, 135–155.CrossRefGoogle Scholar
  20. Cont, R., & Tankov, P. (2004). Financial modelling with jump processes. London: Chapman & Hall.Google Scholar
  21. Cont, R., & Tankov, P. (2009). Constant proportion portfolio insurance in the presence of jumps in asset prices. Mathematical Finance, 19, 379–401.CrossRefGoogle Scholar
  22. Das, S. R., & Uppal, R. (2004). Systemic risk and international portfolio choice. Journal of Finance, 59, 2809–2834.CrossRefGoogle Scholar
  23. Diebold, F. X., & Mariano, R. S. (2002). Comparing predictive accuracy. Journal of Business and Economic Statistics, 20, 134–144.CrossRefGoogle Scholar
  24. Dimitroff, G., Szimayer, A., & Wagner, A. (2009). Quanto option pricing in the parsimonious Heston model. Working Paper, Fraunhofer ITWM, Nr. 174 .Google Scholar
  25. Fallahgoul, H. A., Kim, Y. S., & Fabozzi, F. J. (2016). Elliptical tempered stable distribution. Quantitative Finance, 16, 1–19.CrossRefGoogle Scholar
  26. Guillaume, F. (2013). The \(\alpha \text{ vg }\) model for multivariate asset pricing: Calibration and extension. Review of Derivatives Research, 16, 25–52.CrossRefGoogle Scholar
  27. Heston, S. L., & Nandi, S. (2000). A closed-form GARCH option valuation model. Review of Financial Studies, 13, 585–625.CrossRefGoogle Scholar
  28. Hurst, S. R., Platen, E., & Rachev, S. T. (1997). Subordinated market index models: A comparison. Financial Engineering and the Japanese Markets, 4, 97–124.CrossRefGoogle Scholar
  29. Hurst, S. R., Platen, E., & Rachev, S. T. (1999). Option pricing for a logstable asset price model. Mathematical and Computer Modelling, 29, 105–119.CrossRefGoogle Scholar
  30. Jin, J., & Jjie, Z. S. (1996). Computation of special functions. New York: Wiley.Google Scholar
  31. Kim, Y. S., Giacometti, R., Rachev, S. T., Fabozzi, F. J., & Mignacca, D. (2012). Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model. Annals of Operational Research, 201, 325–343.CrossRefGoogle Scholar
  32. Kim, Y. S., Lee, J., Mittnik, S., & Park, J. (2015). Quanto option pricing in the presence of fat tails and asymmetric dependence. Journal of Econometrics, 187, 512–520.CrossRefGoogle Scholar
  33. Kim, Y. S., Rachev, S. T., Bianchi, M. L., & Fabozzi, F. J. (2008). Financial market models with Lévy processes and time-varying volatility. Journal of Banking and Finance, 32, 1363–1378.CrossRefGoogle Scholar
  34. Kim, Y. S., Rachev, S. T., Bianchi, M. L., & Fabozzi, F. J. (2010). Tempered stable and tempered infinitely divisible GARCH models. Journal of Banking and Finance, 34, 2096–2109.CrossRefGoogle Scholar
  35. Lewis, A. L. (2001). A simple option formula for general jump-diffusion and other exponential Lévy processes.Google Scholar
  36. Luciano, E., & Schoutens, W. (2006). A multivariate jump-driven financial asset model. Quantitative Finance, 6, 385–402.CrossRefGoogle Scholar
  37. Luciano, E., & Semeraro, P. (2010). Multivariate time changes for Lévy asset models: Characterization and calibration. Journal of Computational and Applied Mathematics, 233, 1937–1953.CrossRefGoogle Scholar
  38. Marsaglia, G., & Marsaglia, J. (2004). Evaluating the Anderson-Darling distribution. Journal of Statistical Software, 9, 1–5.CrossRefGoogle Scholar
  39. Nolan, J. P. (1998). Multivariate stable distributions: Approximation, estimation, simulation and identification, a practical guide to heavy tails. Cambridge: Birkhauser Boston Inc.Google Scholar
  40. Park, J., Lee, Y., & Lee, J. (2013). Pricing of quanto option under the Hull and White stochastic volatility model. Communications of the Korean Mathematical Society, 28, 615–633.CrossRefGoogle Scholar
  41. Rachev, S., & Mittnik, S. (2000). Stable Paretian models in finance. New York: Willey.Google Scholar
  42. Rachev, S. T., Kim, Y. S., Bianchi, M. L., & Fabozzi, F. J. (2011). Financial models with Lévy processes and volatility clustering. New York: Wiley.CrossRefGoogle Scholar
  43. Swishchuk, A. (2016). Change of time methods in quantitative finance. New York: Springer.CrossRefGoogle Scholar
  44. Tassinari, G. L., & Bianchi, M. L. (2014). Calibrating the smile with multivariate time-changed Brownian motion and the Esscher transform. International Journal of Theoretical and Applied Finance, 17, 1450023.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical Sciences and Centre for Quantitative Finance and Investment StrategiesMonash UniversityClaytonAustralia
  2. 2.College of BusinessStony Brook UniversityStony BrookUSA
  3. 3.EDHEC Business SchoolLilleFrance

Personalised recommendations