Computational Economics

, Volume 50, Issue 4, pp 579–594 | Cite as

Computational Experiments Successfully Predict the Emergence of Autocorrelations in Ultra-High-Frequency Stock Returns

  • Jian Zhou
  • Gao-Feng Gu
  • Zhi-Qiang Jiang
  • Xiong Xiong
  • Wei Chen
  • Wei Zhang
  • Wei-Xing Zhou
Article

Abstract

Social and economic systems are complex adaptive systems, in which heterogenous agents interact and evolve in a self-organized manner, and macroscopic laws emerge from microscopic properties. To understand the behaviors of complex systems, computational experiments based on physical and mathematical models provide a useful tools. Here, we perform computational experiments using a phenomenological order-driven model called the modified Mike–Farmer (MMF) to predict the impacts of order flows on the autocorrelations in ultra-high-frequency returns, quantified by Hurst index \(H_r\). Three possible determinants embedded in the MMF model are investigated, including the Hurst index \(H_s\) of order directions, the Hurst index \(H_x\) and the power-law tail index \(\alpha _x\) of the relative prices of placed orders. The computational experiments predict that \(H_r\) is negatively correlated with \(\alpha _x\) and \(H_x\) and positively correlated with \(H_s\). In addition, the values of \(\alpha _x\) and \(H_x\) have negligible impacts on \(H_r\), whereas \(H_s\) exhibits a dominating impact on \(H_r\). The predictions of the MMF model on the dependence of \(H_r\) upon \(H_s\) and \(H_x\) are verified by the empirical results obtained from the order flow data of 43 Chinese stocks.

Keywords

Computational experiment Order-driven model Market efficiency Order direction Long memory 

Notes

Acknowledgments

Zhi-Qiang Jiang, Gao-Feng Gu and Wei-Xing Zhou received support from the National Natural Science Foundation of China (71501072) and the Fundamental Research Funds for the Central Universities. Xiong Xiong and Wei Zhang received support from the National Natural Science Foundation of China (71532009,71131007) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT1028). Wei Chen received support from the National Natural Science Foundation of China (71571121).

References

  1. Alessio, E., Carbone, A., Castelli, G., & Frappietro, V. (2002). Second-order moving average and scaling of stochastic time series. European Physical Journal B, 27(2), 197–200. doi: 10.1140/epjb/e20020150.Google Scholar
  2. Alvarez-Ramirez, J., Alvarez, J., Rodriguez, E., & Fernandez-Anaya, G. (2008). Time-varying Hurst exponent for US stock markets. Physica A, 387(24), 6159–6169. doi: 10.1016/j.physa.2008.06.056.CrossRefGoogle Scholar
  3. Bachelier, L. (1900). Théorie de la Spéculation. Ph.D. thesis, University of Paris, Paris.Google Scholar
  4. Bogachev, M. I., Eichner, J. F., & Bunde, A. (2007). Effect of nonlinear correlations on the statistics of return intervals in multifractal data sets. Physical Review Letters, 99, 240601. doi: 10.1103/PhysRevLett.99.240601.CrossRefGoogle Scholar
  5. Bouchaud, J. P. (2008). Economics needs a scientific revolution. Nature, 455, 1181. doi: 10.1038/4551181a.CrossRefGoogle Scholar
  6. Cajueiro, D. O., & Tabak, B. M. (2004). The Hurst exponent over time: Testing the assertion that emerging markets are becoming more efficient. Physica A, 336(3–4), 521–537. doi: 10.1016/j.physa.2003.12.031.CrossRefGoogle Scholar
  7. Cajueiro, D. O., & Tabak, B. M. (2008). Testing for long-range dependence in world stock markets. Chaos, Solitons & Fractals, 37(3), 918–927. doi: 10.1016/j.chaos.2006.09.090.CrossRefGoogle Scholar
  8. Carbone, A. (2009). Detrending moving average algorithm: A brief review. Science and Technology for Humanity (TIC-STH) IEEE pp 691–696. doi: 10.1109/TIC-STH.2009.5444412
  9. Carbone, A., Castelli, G., & Stanley, H. E. (2004a). Analysis of clusters formed by the moving average of a long-range correlated time series. Physical Review E, 69, 026105. doi: 10.1103/PhysRevE.69.026105.
  10. Carbone, A., Castelli, G., & Stanley, H. E. (2004). Time-dependent Hurst exponent in financial time series. Physica A, 344, 267–271. doi: 10.1016/j.physa.2004.06.130.CrossRefGoogle Scholar
  11. Clark-Joseph, A. D. (2013) Exploratory trading, job market paperGoogle Scholar
  12. Cont, R., Kukanov, A., & Stoikov, S. (2014). The price impact of order book events. Journal of Financial Econometrics, 12(1), 47–88. doi: 10.1093/jjfinec/nbt003.CrossRefGoogle Scholar
  13. Cootner, P. H. (1964). The random character of stock market prices. Cambridge: MIT Press.Google Scholar
  14. Cowles, A, 3rd. (1933). Can stock market forecasters forecast? Econometrica, 1, 309–324.CrossRefGoogle Scholar
  15. Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25(2), 383–417. doi: 10.1111/j.1540-6261.1970.tb00518.x.CrossRefGoogle Scholar
  16. Fama, E. F. (1991). Efficient capital markets: II. Journal of Finance, 46(5), 1575–1617. doi: 10.1111/j.1540-6261.1991.tb04636.x.CrossRefGoogle Scholar
  17. Farmer, J. D., & Foley, D. (2009). The economy needs agent-based modelling. Nature, 460, 685–686. doi: 10.1038/460685a.CrossRefGoogle Scholar
  18. Fishe, R. P. H., Haynes, R., & Onur, E. (2015). Anticipatory traders and trading speed, http://ssrn.com/abstract=2606949
  19. Gould, M. D., Porter, M. A., Williams, S., McDonald, M., Fenn, D. J., & Howison, S. D. (2013). Limit order books. Quantitative Finance, 13(11), 1709–1742. doi: 10.1080/14697688.2013.803148.CrossRefGoogle Scholar
  20. Gu, G. F., & Zhou, W. X. (2009). Emergence of long memory in stock volatilities from a modified Mike-Farmer model. EPL (Europhysics Letters), 86(4), 48002. doi: 10.1209/0295-5075/86/48002.CrossRefGoogle Scholar
  21. Gu, G. F., & Zhou, W. X. (2010). Detrending moving average algorithm for multifractals. Physical Review E, 82, 011136. doi: 10.1103/PhysRevE.82.011136.CrossRefGoogle Scholar
  22. Hayes, R., Paddrik, M., Todd, A., Yang, S., Beling, P., & Scherer, W. (2012). Agent based model of the e-mini future: Application for policy making. In C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, & A. M. Uhrmacher (Eds.), Proceedings of the 2012 Winter Simulation Conference. pp. (1–12) Berlin: IEEE. doi: 10.1109/WSC.2012.6465037
  23. Jiang, Z. Q., & Zhou, W. X. (2011). Multifractal detrending moving-average cross-correlation analysis. Physical Review E, 84, 016106. doi: 10.1103/PhysRevE.84.016106.CrossRefGoogle Scholar
  24. Jiang, Z. Q., Xie, W. J., & Zhou, W. X. (2014). Testing the weak-form efficiency of the WTI crude oil futures market. Physica A, 405, 235–244. doi: 10.1016/j.physa.2014.02.042.CrossRefGoogle Scholar
  25. Kantelhardt, J. W., Koscielny-Bunde, E., Rego, H. H. A., Havlin, S., & Bunde, A. (2001). Detecting long-range correlations with detrended fluctuation analysis. Physica A, 295(3–4), 441–454. doi: 10.1016/S0378-4371(01)00144-3.CrossRefGoogle Scholar
  26. Kendall, M. G. (1953). The analysis of economic time-series: Part I: Prices. Journal of the Royal Statistical Society A, 116(1), 11–34. doi: 10.2307/2980947.CrossRefGoogle Scholar
  27. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A. L., Brewer, D., et al. (2009). Social science: Computational social science. Science, 323, 721–723. doi: 10.1126/science.1167742.CrossRefGoogle Scholar
  28. Li, Y. L., Zhang, W., Zhang, Y. J., Zhang, X. T., & Xiong, X. (2014). Calibration of the agent-based continuous double auction stock market by scaling analysis. Information Science, 256, 46–56. doi: 10.1016/j.ins.2012.06.019.CrossRefGoogle Scholar
  29. Lillo, F., & Farmer, J. D. (2004). The long memory of the efficient market. Studies in Nonlinear Dynamics and Econometrics, 8(3), 1–33. doi: 10.2202/1558-3708.1226.Google Scholar
  30. Lillo, F., Farmer, J. D., & Mantegna, R. (2003). Master curve for price impact function. Nature, 421, 129–130. doi: 10.1038/421129a.CrossRefGoogle Scholar
  31. Lim, M., & Coggins, R. (2005). The immediate price impact of trades on the Australian Stock Exchange. Quantitative Finance, 5(4), 365–377. doi: 10.1080/14697680500151400.CrossRefGoogle Scholar
  32. Lo, A. W. (2004). The adaptive markets hypothesis. Journal of Portfolio Management, 30(5), 15–29. doi: 10.3905/jpm.2004.442611.CrossRefGoogle Scholar
  33. Lux, T. (2011). Network theory is sorely required. Nature, 469, 303. doi: 10.1038/469302a.CrossRefGoogle Scholar
  34. Lux, T., & Westerhoff, F. (2009). Economics crisis. Nature Physics, 5, 2–3. doi: 10.1038/nphys1163.CrossRefGoogle Scholar
  35. Mandelbrot, B. (1966). Forecasts of future prices, unbiased markets, and “martingale” models. Journal of Business, 39(1), 242–255. doi: 10.1086/294850.CrossRefGoogle Scholar
  36. Mandelbrot, B. B. (1971). Analysis of long-run dependence in economics: The R/S technique. Econometrica, 39(Suppl), 68–69.Google Scholar
  37. Mandelbrot, B. B., & Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Review, 10(4), 422–437. doi: 10.1137/1010093.CrossRefGoogle Scholar
  38. Meng, H., Ren, F., Gu, G. F., Xiong, X., Zhang, Y. J., Zhou, W. X., et al. (2012). Effects of long memory in the order submission process on the properties of recurrence intervals of large price fluctuations. EPL (Europhysics Letters), 98(5), 38003. doi: 10.1209/0295-5075/98/38003.CrossRefGoogle Scholar
  39. Mike, S., & Farmer, J. D. (2008). An empirical behavioral model of liquidity and volatility. Journal of Economic Dynamics and Control, 32(1), 200–234. doi: 10.1016/j.jedc.2007.01.025.CrossRefGoogle Scholar
  40. Mishra, R. K., Sehgal, S., & Bhanumurthy, N. R. (2011). A search for long-range dependence and chaotic structure in Indian stock market. Chaos, Solitons & Fractals, 20(2), 96–104. doi: 10.1016/j.rfe.2011.04.002.Google Scholar
  41. Osborne, M. F. M. (1959). Brownian motion in the stock market. Operations Research, 7(2), 145–173. doi: 10.1287/opre.7.2.145.CrossRefGoogle Scholar
  42. Peng, C. K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., & Goldberger, A. L. (1994). Mosaic organization of DNA nucleotides. Physical Review E, 49(2), 1685–1689. doi: 10.1103/PhysRevE.49.1685.CrossRefGoogle Scholar
  43. Samuelson, P. A. (1965). Proof that properly anticipated prices fluctuate randomly. Industrial Management Review, 6(2), 41–49. doi: 10.1142/9789814566926_0002.Google Scholar
  44. Schreiber, T., & Schmitz, A. (1996). Improved surrogate data for nonlinearity tests. Physical Review Letters, 77(4), 635–638. doi: 10.1103/PhysRevLett.77.635.CrossRefGoogle Scholar
  45. Schweitzer, F., Fagiolo, G., Sornette, D., Vega-Redondo, F., Vespignani, A., & White, D. R. (2009). Economic networks: The new challenges. Science, 325, 422–425. doi: 10.1126/science.1173644.Google Scholar
  46. Shao, Y. H., Gu, G. F., Jiang, Z. Q., Zhou, W. X., & Sornette, D. (2012). Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series. Scientific Reports, 2, 835. doi: 10.1038/srep00835.CrossRefGoogle Scholar
  47. Sornette, D. (2014). Physics and financial economics (1776–2014): Puzzles, Ising and agent-based models. Reports on Progress in Physics, 77(6), 062001. doi: 10.1088/0034-4885/77/6/062001.CrossRefGoogle Scholar
  48. Working, H. (1934). A random-difference series for use in the analysis of time series. Journal of the American Statistical Association, 29(185), 11–24. doi: 10.2307/2278456.CrossRefGoogle Scholar
  49. Xu, L. M., Ivanov, P. C., Hu, K., Chen, Z., Carbone, A., & Stanley, H. E. (2005). Quantifying signals with power-law correlations: A comparative study of detrended fluctuation analysis and detrended moving average techniques. Physical Review E, 71, 051101. doi: 10.1103/PhysRevE.71.051101.CrossRefGoogle Scholar
  50. Zhou, W. X. (2008). Multifractal detrended cross-correlation analysis for two nonstationary signals. Physical Review E, 77, 066211. doi: 10.1103/PhysRevE.77.066211.CrossRefGoogle Scholar
  51. Zhou, W. X. (2012a). Determinants of immediate price impacts at the trade level in an emerging order-driven market. New Journal of Physics, 14(9), 023055. doi: 10.1088/1367-2630/14/2/023055.CrossRefGoogle Scholar
  52. Zhou, W. X. (2012b). Universal price impact functions of individual trades in an order-driven market. Quantitative Finance, 12(8), 1253–1263. doi: 10.1080/14697688.2010.504733.CrossRefGoogle Scholar
  53. Zovko, I., & Farmer, J. D. (2002). The power of patience: A behavioural regularity in limit-order placement. Quantitative Finance, 2(5), 387–392. doi: 10.1088/1469-7688/2/5/308.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of BusinessEast China University of Science and TechnologyShanghaiChina
  2. 2.School of Business and Research Center for EconophysicsEast China University of Science and TechnologyShanghaiChina
  3. 3.College of Management and Economics and China Center for Social Computing and AnalyticsTianjin UniversityTianjinChina
  4. 4.Shenzhen Stock ExchangeShenzhenChina
  5. 5.Department of Mathematics, and Research Center for Econophysics, School of BusinessEast China University of Science and TechnologyShanghaiChina

Personalised recommendations