Skip to main content

Interbank Exposure Networks

Abstract

Financial institutions are highly interconnected. Consequently, they form complex systems which are inherently unstable. This paper reviews empirical research on the instability of complex interbank systems. Three network approaches are distinguished: descriptions of interbank exposure networks; simulation and modelling; and the development of new metrics to describe network topology and individual banks’ relative importance. The paper concludes by inferring policy implications and priorities for future research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. 1.

    A walk is a traversal of nodes along links without any constraints. In contrast a trail is a walk where a given link is not visited twice and a path is a walk where a given node is not visited twice.

  2. 2.

    CLS is the world’s largest settlement system, settling on peak days in 2013 almost $9 trillion worth of foreign exchange transactions on the books of 17 central banks (and currencies).

References

  1. Acemoglu, D., Ozdaglar, A., & Tahbaz-Salehi, A. (2013). “Systemic risk and stability in financial networks”. NBER Working Paper No. 18727.

  2. Adamic, L., Brunetti, C., Harris, J., & Kirilenko, A. (2012). Trading networks. Manuscript.

  3. Akerlof, G. A. (1970). The market for lemons: quality uncertainty and the market mechanism. The Quarterly Journal of Economics, 84(3), 488–500.

    Article  Google Scholar 

  4. Aldasoro, I., & Angeloni, I. (2013). “Input-output-based measures of systemic importance”. SAFE Working Paper No. 29.

  5. Allen, F., & Babus, A. (2009). Networks in finance. In P. R. Kleindorfer & J. R. Wind (Eds.), The network challenge: strategy, profit, and risk in an interlinked world (pp. 367–382). Saddle River: Wharton School Publishing.

    Google Scholar 

  6. Allen, F., & Gale, D. (2000). Financial contagion. Journal of Political Economy, 108(1), 1–33.

    Article  Google Scholar 

  7. Alves, I., Ferrari, S., Franchini, P., Heam, J. C., Jurca, P., Langfield, S., Laviola, S., Liedorp, F., Sánchez, A., Tavolaro, S., & Vuillemey, G. (2013). “The structure and resilience of the European interbank market”. ESRB, Occasional Paper No.3.

  8. Anderson, R. M., & May, R. M. (1991). Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press.

    Google Scholar 

  9. Arciero, L., Heijmans, R., Heuver, R., Massarenti, M., Picillo, C., & Vacirca, F. (2013). “How to measure the unsecured money market? The Eurosystem’s implementation and validation using TARGET2 data”. DNB Working Paper No. 369.

  10. Arthur, W. B., Holland, J. H., LeBaron, B., Palmer, R., & Tayler, P. (1997). Asset pricing under endogenous expectations in an artificial stock market. The Economy as an evolving complex system II. Reading, MA: Addison- Wesley.

    Google Scholar 

  11. Atalay, E., & Bech, M. L. (2008). The topology of the federal funds market. Physica A: Statistical Mechanics and its Applications, 389(22), 5223–5246.

    Google Scholar 

  12. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

  13. Basel Committee on Banking Supervision (2013). “Global systemically important banks”.

  14. Bastos e Santos, E., & Cont, R. (2010). “The Brazilian interbank network structure and systemic risk”. Banco Central do Brazil Working Paper No. 219.

  15. Battiston, S., Puliga, M., Kaushik, R., Tasca, P., & Caldarelli, G. (2012). “DebtRank: Too central to fail? Financial networks, the Fed and systemic risk”. Nature, Scientific Reports 2, Article Number 541.

  16. Bech, M. L., & Rørdam, K. B. (2009). The topology of danish interbank money flows. Banks and Bank Systems, 4(4), 48–65.

  17. Billio, M., Getmansky, M., lo, A. W., & Pelizzon, L. (2012). econometric measures of systemic risk in the finance and insurance sectors. Journal of Financial Economics, 104(3), 535–559.

    Article  Google Scholar 

  18. Bisias, D., Flood, M., Lo, A. W., & Valavanis, S. (2012). A survey of systemic risk analytics. Annual Review of Financial Economics, 4, 255–296.

    Article  Google Scholar 

  19. Bollobás, B. (1998). Random graphs. London: Academic Press.

    Book  Google Scholar 

  20. Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2(1), 113–120.

    Article  Google Scholar 

  21. Bonacich, P. (1987). Power and centrality: a family of measures. American Journal of Sociology, 92(5), 1170–1182.

    Article  Google Scholar 

  22. Borgatti, S. P. (2005). Centrality and network flow. Social networks, 27, 55–71.

    Article  Google Scholar 

  23. Boss, M., Elsinger, H., Summer, M., & Thurner, S. (2004). The network topology of the interbank market. Quantitative Finance, 4(6), 677–684.

    Article  Google Scholar 

  24. Callaway, D. S., Newman, M. E. J., Strogatz, S. H., & Watts, D. J. (2000). Network robustness and fragility: percolation on random graphs. Physical Review Letters, 85, 5468–5471.

    Article  Google Scholar 

  25. Castrén, O., & Kristian, K. I. (2009). “Balance sheet interlinkages and macro-financial risk analysis in the euro area”. ECB Working Paper No. 1124.

  26. Chan-Lau, J., Espinosa, M., Kay, G., & Juan, S. (2009). Assessing the systemic implications of financial linkages. Report: IMF Global Financial Stability.

    Google Scholar 

  27. Cifuentes, R., Ferrucci, G., & Shin, H. S. (2005). Liquidity risk and contagion. Journal of the European Economic Association, 3(2), 556–566.

    Article  Google Scholar 

  28. Colander, D., Haas, A., Goldberg, M., Kirman, A., Lux, T., & Sloth, B. (2009). The financial crisis and the systemic failure of academic economics. Critical Review, 21(2—-3), 249–267.

    Article  Google Scholar 

  29. Craig, B., & von Peter, G. (2014). “Interbank tiering and money center banks”. Journal of Financial Intermediation, forthcoming.

  30. De Bandt, O., & Hartmann, P. (2000). “Systemic risk: A survey”. European Central Bank Working Paper No. 35.

  31. De Masi, G., Iori, G., & Caldarelli, G. (2006). Fitness model for the Italian interbank money market. Physical Review E, 74(6), 066112.

  32. Denbee, E., & McLafferty, J. (2013). “Liquidity saving in CHAPS: A simulation study”. In B. Alexandrova-Kabadjova, S. Martinez-Jaramillo, A. L. Garcia-Almanza & E. Tsang (Eds), Simulation in computational finance and economics: Tools and emerging applications, (pp. 120–142).

  33. Degryse, H., & Nguyen, G. (2004). Interbank exposures: an empirical examination of systemic risk in the belgian banking system. International Journal of Central Banking, 3(2), 123–171.

    Google Scholar 

  34. Diamond, D. W., & Rajan, R. (2009). The credit crisis: conjectures about causes and remedies. American Economic Review P&P, 99(2), 606–610.

    Article  Google Scholar 

  35. ECB (2003). “CLS - purpose, concept and implications”. European Central Bank Monthly Bulletin, January 2003, pp. 53–66.

  36. ECB (2010). “Financial networks and financial stability”. European Central Bank Financial Stability Review, June 2010.

  37. Fricke, D., & Lux, T. (2013). “On the distribution of links in the interbank network: Evidence from the e-mid overnight money market”. Kiel Institute for the World Economy Working Paper No. 1819.

  38. Freixas, X., Parigi, B. M., & Rochet, J. C. (2000). Systemic risk, interbank relations, and liquidity provision by the central bank. Journal of Money, Credit and Banking, 32, 611–638.

    Article  Google Scholar 

  39. Freeman, L. C. (1979). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239.

    Article  Google Scholar 

  40. Fruchterman, T., & Reingold, E. (1991). Graph drawing by force-directed placement. Software: Practice and Experience, 1164(11), 21–1129.

    Google Scholar 

  41. Furfine, C. (1999). The microstructure of the federal funds market. Institutions & Instruments, 8(5), 24–44.

    Article  Google Scholar 

  42. Garratt, R., Mahadeva L., & Svirydenska, K. (2011). “Mapping systemic risk in the international banking network”. Bank of England Working Paper 413.

  43. Georg, C. P. (2013). The effect of the interbank network structure on contagion and common shocks. Journal of Banking & Finance, 37(7), 2216–2228.

    Article  Google Scholar 

  44. Gai, P., & Kapadia, S. (2010). Contagion in financial networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 466(2120), 2401–2423.

    Article  Google Scholar 

  45. Haldane, A. (2009). Rethinking the financial network. Amsterdam, April: Speech delivered at the Financial Student Association.

    Google Scholar 

  46. Haldane, A., & May, R. M. (2011). Systemic risk in banking ecosystems. Nature, 469(7330), 351–355.

    Article  Google Scholar 

  47. Heijmans, R., Heuver, R., & Walraven, D. (2010). “Monitoring the unsecured interbank money market using TARGET2 data”. De Nederlandsche Bank Working Paper no. 276.

  48. Iazzetta, C., & Manna, M. (2009). “The topology of the interbank market: developments in Italy since 1990”. Banca d’Italia Working Paper no. 711.

  49. Imakubo, K., & McAndrews, J. J. (2006). “Funding Levels for the New Accounts in BOJ-Net”. Bank of Japan Working Paper no. 06–E21.

  50. Iori, G., De Masi, G., Precup, O. V., Gabbi, G., & Caldarelli, G. (2008). A network analysis of the italian overnight money market. Journal of Economic Dynamics and Control, 32(1), 259–278.

    Article  Google Scholar 

  51. Jensen, H. J. (1998). Self-organized Criticality: Emergent Complex Behaviour in Physical and Biological Systems. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  52. Jiang, Z. Q., & Zhou, W. X. (2010). Complex stock trading network among investors. Physica A: Statistical Mechanics and its Applications, 389(21), 4929–4941.

    Article  Google Scholar 

  53. Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1), 39–43.

    Article  Google Scholar 

  54. Kinney, R. (2005). Modeling cascading failures in the north american power grid. The European Physical Journal B-Condensed Matter and Complex Systems, 46(1), 101–107.

    Article  Google Scholar 

  55. Langfield, S., Liu, Z., & Ota, T. (2014). “Mapping the UK interbank system”. Journal of Banking & Finance, forthcoming.

  56. Lorenz, J., Battiston, S., & Schweitzer, F. (2009). Systemic risk in a unifying framework for cascading processes on networks. The European Physical Journal B, 71(4), 441–460.

    Article  Google Scholar 

  57. Markose, S., Giansante, S., & Shaghaghi, A. R. (2012). Too interconnected to fail’: financial network of us cds market: topological fragility and systemic risk. Journal of Economic Behavior & Organization, 83(3), 627–646.

    Article  Google Scholar 

  58. Martinez-Jaramillo, S. (2007). Artificial financial markets: an agent based approach to reproduce stylized facts and to study the Red Queen Effect. Centre for Computational Finance and Economic Agents (CCFEA): University of Essex.

  59. Martinez-Jaramillo, S., & Tsang, E. P. K. (2009). An heterogeneous, endogenous and coevolutionary GP-based financial market. IEEE Transactions on Evolutionary Computation, 13(1), 33–55.

    Article  Google Scholar 

  60. Minoiu, C., & Reyes, J. A. (2011). “A network analysis of global banking: 1978–2009”. IMF Working Paper no. 11/74.

  61. Montagna, M., & Lux, T. (2013). “Hubs and resilience: towards more realistic models of the interbank markets”. Kiel Working Paper no. 1826.

  62. Moore, C., & Newman, M. E. J. (2000). Exact solution of site and bond percolation on small-world networks. Physical Review E, 62(5), 7059.

    Article  Google Scholar 

  63. Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45, 167–256.

    Article  Google Scholar 

  64. Nier, E., Jing, Y., Tanju, Y., & Amadeo, A. (2007). Network models and financial stability. Journal of Economic Dynamics and Control, 31(6), 2033–2060.

    Article  Google Scholar 

  65. Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). “The pagerank citation ranking: Bringing order to the web”. Technical Report 1999–66, Stanford InfoLab.

  66. Sachtjen, M. L., Carrerras, B. A., & Lynch, V. E. (2000). Disturbances in a power transmission system. Physical Review E, 61(5), 4877–4882.

    Article  Google Scholar 

  67. Scott, H. S. (2012). “Interconnectedness and contagion”. Committee on Capital Market Regulation.

  68. Soramäki, K., Bech, M. L., Arnold, J., Glass, R. J., & Beyeler, W. E. (2007). The topology of interbank payment flows. Physica A: Statistical Mechanics and its Applications, 379(1), 317–333.

    Article  Google Scholar 

  69. Soramäki, K., & Cook, S. (2013). SinkRank: An algorithm for identifying systemically important banks in payment systems. Economics: The Open-Access, Open-Assessment E-Journal, 7(2013–28), 1–27.

    Google Scholar 

  70. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6682), 440–442.

    Article  Google Scholar 

  71. Wetherilt, A., Zimmerman, P., & Soramäki, K. (2009). “The sterling unsecured loan market during 2006–2008: insights from network topology”. Bank of England Working Paper no. 398.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sam Langfield.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Langfield, S., Soramäki, K. Interbank Exposure Networks. Comput Econ 47, 3–17 (2016). https://doi.org/10.1007/s10614-014-9443-x

Download citation

Keywords

  • Systemic Risk
  • Credit Default Swap
  • Eigenvector Centrality
  • Geodesic Path
  • Interbank Market