Computational Economics

, Volume 40, Issue 3, pp 219–244 | Cite as

Sequential Action and Beliefs Under Partially Observable DSGE Environments

  • Seong-Hoon Kim


This paper introduces a classification of DSGEs from a Markovian perspective, and positions the class of Partially Observable Markov Decision Process (POMDP) to the center of a generalization of linear rational expectations models. The analysis of the POMDP class builds on the previous development in dynamic controls for linear system, and derives a solution algorithm by formulating an equilibrium as a fixed point of an operator that maps what we observe into what we believe.


DSGE Partially Observable Markov Decision Process (POMDP) Observation channel Kalman filter 

JEL Classification

C63 D58 D83 E13 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baxter B., Graham L., Wright S. (2011) Invertible and non-invertible information sets in linear rational expectations models. Journal of Economic Dynamics and Control 35(3): 295–311CrossRefGoogle Scholar
  2. Binder, M., & Pesaran, M. H. (1995). Multivariate rational expectations models and macroeconometric modeling: A review and some new results. In M. H. Pesaran & M. R. Wickens (Eds.), Handbook of applied econometrics: Macroeconomics and finance. Oxford: Wiley-Blackwell.Google Scholar
  3. Blanchard, O., & Gali, J. (2007). A new Keynesian model with unemployment. Center for Financial Studies CFS working paper no. 2007/08.Google Scholar
  4. Blanchard O., Kahn J. (1980) The solution of linear difference models under rational expectations. Econometrica 48(5): 1305–1312CrossRefGoogle Scholar
  5. Cagetti M., Hansen L. P., Sargent T., Williams N. (2002) Robustness and pricing with uncertain growth. Review of Financial Studies 15(2): 363–404CrossRefGoogle Scholar
  6. Cassandra, A. (2005). Partially observable Markov decision processes.
  7. Curdia, V. (2008). Optimal monetary policy under sudden stops. Staff report no. 323. Federal Reserve Bank of New York.Google Scholar
  8. Gertler, M., & Karadi, P. (2009). A model of unconventional monetary policy. New York University manuscript.Google Scholar
  9. Geweke, J. (1999). Computational experiments and reality. Society for Computational Economics, Computing in Economics and Finance, paper no. 401.Google Scholar
  10. Geweke J. (2001) A note on some limitations of CRRA utility. Economics Letters 71(3): 341–345CrossRefGoogle Scholar
  11. Hamilton J. D. (1994) Time series analysis. Princeton University Press, PrincetonGoogle Scholar
  12. Kaelbling L., Littman M., Cassandra A. (1998) Planning and acting in partially observable stochastic domains. Artificial Intelligence 101: 99–134CrossRefGoogle Scholar
  13. Kendrick D., Amman H. (2006) A classification system for economic stochastic control models. Computational Economics 27: 453–481CrossRefGoogle Scholar
  14. King R. G., Watson M. W. (1998) The solution of singular linear difference systems under rational expectations. International Economic Review 39(4): 1015–1026CrossRefGoogle Scholar
  15. Klein P. (2000) Using the generalized Schur form to solve a multivariate linear rational expectations model. Journal of Economic Dynamics & Control 24: 1405–1423CrossRefGoogle Scholar
  16. Kydland F. E., Prescott E. C. (1982) Time to build and aggregate fluctuations. Econometrica 50(6): 1345–1370CrossRefGoogle Scholar
  17. Littman M. (2009) A tutorial on partially observable Markov decision processes. Journal of Mathematical Psychology 53(3): 119–125CrossRefGoogle Scholar
  18. Lorenzoni G. (2009) A theory of demand shocks. American Economic Review 99(5): 2050–2084CrossRefGoogle Scholar
  19. Lucas R. E. (1978) Asset prices in an exchange economy. Econometrica 46(6): 1429–1445CrossRefGoogle Scholar
  20. McCallum B. T. (1998) Solutions to linear rational expectations models: A compact exposition. Economics Letters 61(2): 143–147CrossRefGoogle Scholar
  21. Nordhaus W. (1992) An optimal transition path for controlling greenhouse gases. Science 258: 1315–1319CrossRefGoogle Scholar
  22. Pigou A. (1927) Industrial fluctuations. MacMillan, LondonGoogle Scholar
  23. Sargent T. (1991) Equilibrium with signal extraction from endogenous variables. Journal of Economic Dynamics and Control 15(2): 245–273CrossRefGoogle Scholar
  24. Schmitt-Grohe S., Uribe M. (2004) Solving dynamic general equilibrium models using a second-order approximation to the policy function. Journal of Economic Dynamics & Control 28: 755–775CrossRefGoogle Scholar
  25. Smets F., Wouters R. (2003) An estimated dynamic stochastic general equilibrium model of the euro area. Journal of the European Economic Association 1(5): 1123–1175CrossRefGoogle Scholar
  26. Sondik, E. (1971). The optimal control of partially observable Markov decision processes. PhD thesis, Stanford University.Google Scholar
  27. Svensson L., Woodford M. (2003) Indicator variables for optimal policy. Journal of Monetary Economics 50(3): 691–720CrossRefGoogle Scholar
  28. Svensson L., Woodford M. (2004) Indicator variables for optimal policy under asymmetric information. Journal of Economic Dynamics and Control 28(4): 661–690CrossRefGoogle Scholar
  29. Townsend R. M. (1983) Forecasting the forecasts of others. Journal of Political Economy 91(4): 546–588CrossRefGoogle Scholar
  30. Weitzman M. L. (2007) Subjective expectations and asset-return puzzles. American Economic Review 97(4): 1102–1130CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.School of Economics and FinanceUniversity of St AndrewsFifeUK

Personalised recommendations