Skip to main content
Log in

Statistical Inferences for Generalized Pareto Distribution Based on Interior Penalty Function Algorithm and Bootstrap Methods and Applications in Analyzing Stock Data

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

This paper studies the application of extreme value statistics (EVS) theory on analysis for stock data, based on interior penalty function algorithm and Bootstrap methods. The generalized Pareto distribution (GPD) models are considered in analyzing the closing price data of Shanghai stock market. The maximum likelihood estimates (MLEs) are obtained by using the interior penalty function algorithm. Correspondingly, the bias and standard errors of MLEs, and the hypothesis test on the shape parameter are concerned through Bootstrap methods. Some simulations are performed to demonstrate the efficacy of parameter estimation and the power of the test. The estimates of the tail index in this paper are compared with those obtained via classical methods. At last, the model is diagnosed by numerical and graphical methods and the Value-at-Risk (VaR) is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson T. W. (1971) The statistical analysis of time series. Wiley, New York

    Google Scholar 

  • Angus J. E. (1993) Asymptotic theory for bootstrapping the extremes. Communications in Statistics: Theory and Methods 22: 15–30

    Article  Google Scholar 

  • Auslender A. (1999) Penalty and barrier methods: A unified framework. SIAM Journal on Optimization 10: 211–230

    Article  Google Scholar 

  • Balkema A. A., de Haan L. (1974) Residual lifetime at great age. Annals of Probability 2: 792–804

    Article  Google Scholar 

  • Box G. E. P., Jenkins G. M. (1976) Time series analysis: Forecasting and control. Holden-Day, San Francisco, USA, p 575

    Google Scholar 

  • Castillo E., Hadi A. S. (1997) Fitting the generalized Pareto distribution to data. Journal of the American Statistical Association 92: 1609–1620

    Article  Google Scholar 

  • Clauset A., Shalizi C. R., Newman M. E. J. (2009) Power-law distributions in empirical data. SIAM Review 51(4): 661–703

    Article  Google Scholar 

  • Coles S. (2001) An introduction to statistical modeling of extreme values. Springer-Verlag, London

    Google Scholar 

  • Danielsson J., de Haan L., Peng L., de Vries C. G. (2001) Using a bootstrap method to choose the sample fraction in tail index estimation. Journal of Multivariate Analysis 76: 226–248

    Article  Google Scholar 

  • Davison A. C. (1984) Modeling excesses over high thresholds, with an application. In: Tiago de Oliveira J. (Ed.) Statistical extremes and applications. Reidel, Dordrecht, pp 461–482

    Google Scholar 

  • Davison A. C., Smith R. L. (1990) Models for exceedances over high thresholds (with discussion). Journal of the Royal Statistical Society B 52: 393–442

    Google Scholar 

  • de Haan L., Ferreira A. (2006) Extreme value theory: An introduction. Springer, New York

    Google Scholar 

  • de Haan L., Peng L. (1998) Comparison of tail index estimators. Statistica Nederlandica 52(1): 60–70

    Article  Google Scholar 

  • Dekkers A. L. M., Einmahl J. H. J., de Haan L. (1989) A moment estimator for the index of an extreme value distribution. Annals of Statistics 17: 1833–1855

    Article  Google Scholar 

  • Di Pillo G., Grippo L. (1989) Exact penalty functions in constrained optimization. SIAM Journal on Control and Optimization 27: 1333–1360

    Article  Google Scholar 

  • Drees H., Kaufmann E. (1998) Selecting the optimal sample fraction in univariate extreme value estimation. Stochastic Processes and their Applications 75(2): 149–172

    Article  Google Scholar 

  • Efron B., Tibshirani R. J. (1993) An introduction to the bootstrap. Chapman & Hall, New York

    Google Scholar 

  • Embrechts P., Kluppelbern C., Mikosch T. (1997) Modelling extreme events for insurance and finance. Springer, New York

    Google Scholar 

  • Eremin I. I. (1971) The penalty method in convex programming. Cybernetics 3: 53–56

    Article  Google Scholar 

  • Fan J. Q., Yao Q. W. (2003) Nonlinear time series: Nonparametric and parametric methods. Springer-Verlag, New York

    Book  Google Scholar 

  • Fisher R. A., Tippet L. H. C. (1928) Limiting forms of the frequency distributions of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society 24: 180

    Article  Google Scholar 

  • Gnedenko B. V. (1943) Sur la distribution limite du terme maximum d’un serie aleatoire. Annals of Mathematics 44: 423

    Article  Google Scholar 

  • Hall P. (1990) Using the bootstrap to estimate means squared error and select smoothing parameter in nonparametric problems. Journal of Multivariate Analysis 32: 177–203

    Article  Google Scholar 

  • Hill B. M. (1975) A simple general approach to inference about the tail of a distribution. Annals of Statistics 3: 1163–1174

    Article  Google Scholar 

  • Hosking J. R. M. (1984) Testing whether the shape parameter is zero in the generalized extreme value distribution. Biometrika 71: 367–374

    Google Scholar 

  • Hosking J. R. M., Wallis J. R. (1987) Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29: 339–349

    Article  Google Scholar 

  • Hosking J. R. M., Wallis J. R., Wood E. F. (1985) Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics 27: 251–261

    Article  Google Scholar 

  • Jansen D. W., de Vries C. G. (1991) On the frequency of large stock returns:putting booms and busts into perspective. The Review of Economics and Statistics 73(1): 18–24

    Article  Google Scholar 

  • Kearns P., Pagan A. (1997) Estimating the density tail index for financial time series. The Review of Economics and Statistics 79(2): 171–175

    Article  Google Scholar 

  • Kedem B., Fokianos K. (2002) Regression models for time series analysis. Wiley, New York

    Book  Google Scholar 

  • McNeil A. J., Frey R., Embrechts P. (2005) Quantitative risk management: Concepts, techniques and tools. Princeton University Press, Princeton

    Google Scholar 

  • Pickands J. (1975) Statistical inference using extreme order statistics. The Annals of Statistics 3(1): 119–131

    Article  Google Scholar 

  • Rasmussen P. F. (2001) Generalized probability weighted moments: application to the generalized Pareto distribution. Water Resources Research 37(6): 1745–1751

    Article  Google Scholar 

  • Smith R. L. (1985) Maximum likelihood estimation in a class of non-regular cases. Biometrika 72: 67–90

    Article  Google Scholar 

  • Zangwill W. (1963) Non-linear programming via penalty functions. Management Science 13: 344–358

    Article  Google Scholar 

  • Zhang J. (2007) Likelihood moment estimation for the generalized Pareto distribution. Australian & New Zealand Journal of Statistics 49(1): 69–77

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Guan Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C., Lin, JG. & Ren, YY. Statistical Inferences for Generalized Pareto Distribution Based on Interior Penalty Function Algorithm and Bootstrap Methods and Applications in Analyzing Stock Data. Comput Econ 39, 173–193 (2012). https://doi.org/10.1007/s10614-011-9256-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-011-9256-0

Keywords

Navigation