Advertisement

Computational Economics

, Volume 39, Issue 2, pp 173–193 | Cite as

Statistical Inferences for Generalized Pareto Distribution Based on Interior Penalty Function Algorithm and Bootstrap Methods and Applications in Analyzing Stock Data

  • Chao Huang
  • Jin-Guan Lin
  • Yan-Yan Ren
Article

Abstract

This paper studies the application of extreme value statistics (EVS) theory on analysis for stock data, based on interior penalty function algorithm and Bootstrap methods. The generalized Pareto distribution (GPD) models are considered in analyzing the closing price data of Shanghai stock market. The maximum likelihood estimates (MLEs) are obtained by using the interior penalty function algorithm. Correspondingly, the bias and standard errors of MLEs, and the hypothesis test on the shape parameter are concerned through Bootstrap methods. Some simulations are performed to demonstrate the efficacy of parameter estimation and the power of the test. The estimates of the tail index in this paper are compared with those obtained via classical methods. At last, the model is diagnosed by numerical and graphical methods and the Value-at-Risk (VaR) is estimated.

Keywords

Daily closing price Generalized Pareto distribution Threshold Interior penalty function algorithm Bootstrap method Value at Risk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson T. W. (1971) The statistical analysis of time series. Wiley, New YorkGoogle Scholar
  2. Angus J. E. (1993) Asymptotic theory for bootstrapping the extremes. Communications in Statistics: Theory and Methods 22: 15–30CrossRefGoogle Scholar
  3. Auslender A. (1999) Penalty and barrier methods: A unified framework. SIAM Journal on Optimization 10: 211–230CrossRefGoogle Scholar
  4. Balkema A. A., de Haan L. (1974) Residual lifetime at great age. Annals of Probability 2: 792–804CrossRefGoogle Scholar
  5. Box G. E. P., Jenkins G. M. (1976) Time series analysis: Forecasting and control. Holden-Day, San Francisco, USA, p 575Google Scholar
  6. Castillo E., Hadi A. S. (1997) Fitting the generalized Pareto distribution to data. Journal of the American Statistical Association 92: 1609–1620CrossRefGoogle Scholar
  7. Clauset A., Shalizi C. R., Newman M. E. J. (2009) Power-law distributions in empirical data. SIAM Review 51(4): 661–703CrossRefGoogle Scholar
  8. Coles S. (2001) An introduction to statistical modeling of extreme values. Springer-Verlag, LondonGoogle Scholar
  9. Danielsson J., de Haan L., Peng L., de Vries C. G. (2001) Using a bootstrap method to choose the sample fraction in tail index estimation. Journal of Multivariate Analysis 76: 226–248CrossRefGoogle Scholar
  10. Davison A. C. (1984) Modeling excesses over high thresholds, with an application. In: Tiago de Oliveira J. (Ed.) Statistical extremes and applications. Reidel, Dordrecht, pp 461–482Google Scholar
  11. Davison A. C., Smith R. L. (1990) Models for exceedances over high thresholds (with discussion). Journal of the Royal Statistical Society B 52: 393–442Google Scholar
  12. de Haan L., Ferreira A. (2006) Extreme value theory: An introduction. Springer, New YorkGoogle Scholar
  13. de Haan L., Peng L. (1998) Comparison of tail index estimators. Statistica Nederlandica 52(1): 60–70CrossRefGoogle Scholar
  14. Dekkers A. L. M., Einmahl J. H. J., de Haan L. (1989) A moment estimator for the index of an extreme value distribution. Annals of Statistics 17: 1833–1855CrossRefGoogle Scholar
  15. Di Pillo G., Grippo L. (1989) Exact penalty functions in constrained optimization. SIAM Journal on Control and Optimization 27: 1333–1360CrossRefGoogle Scholar
  16. Drees H., Kaufmann E. (1998) Selecting the optimal sample fraction in univariate extreme value estimation. Stochastic Processes and their Applications 75(2): 149–172CrossRefGoogle Scholar
  17. Efron B., Tibshirani R. J. (1993) An introduction to the bootstrap. Chapman & Hall, New YorkGoogle Scholar
  18. Embrechts P., Kluppelbern C., Mikosch T. (1997) Modelling extreme events for insurance and finance. Springer, New YorkGoogle Scholar
  19. Eremin I. I. (1971) The penalty method in convex programming. Cybernetics 3: 53–56CrossRefGoogle Scholar
  20. Fan J. Q., Yao Q. W. (2003) Nonlinear time series: Nonparametric and parametric methods. Springer-Verlag, New YorkCrossRefGoogle Scholar
  21. Fisher R. A., Tippet L. H. C. (1928) Limiting forms of the frequency distributions of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society 24: 180CrossRefGoogle Scholar
  22. Gnedenko B. V. (1943) Sur la distribution limite du terme maximum d’un serie aleatoire. Annals of Mathematics 44: 423CrossRefGoogle Scholar
  23. Hall P. (1990) Using the bootstrap to estimate means squared error and select smoothing parameter in nonparametric problems. Journal of Multivariate Analysis 32: 177–203CrossRefGoogle Scholar
  24. Hill B. M. (1975) A simple general approach to inference about the tail of a distribution. Annals of Statistics 3: 1163–1174CrossRefGoogle Scholar
  25. Hosking J. R. M. (1984) Testing whether the shape parameter is zero in the generalized extreme value distribution. Biometrika 71: 367–374Google Scholar
  26. Hosking J. R. M., Wallis J. R. (1987) Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29: 339–349CrossRefGoogle Scholar
  27. Hosking J. R. M., Wallis J. R., Wood E. F. (1985) Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics 27: 251–261CrossRefGoogle Scholar
  28. Jansen D. W., de Vries C. G. (1991) On the frequency of large stock returns:putting booms and busts into perspective. The Review of Economics and Statistics 73(1): 18–24CrossRefGoogle Scholar
  29. Kearns P., Pagan A. (1997) Estimating the density tail index for financial time series. The Review of Economics and Statistics 79(2): 171–175CrossRefGoogle Scholar
  30. Kedem B., Fokianos K. (2002) Regression models for time series analysis. Wiley, New YorkCrossRefGoogle Scholar
  31. McNeil A. J., Frey R., Embrechts P. (2005) Quantitative risk management: Concepts, techniques and tools. Princeton University Press, PrincetonGoogle Scholar
  32. Pickands J. (1975) Statistical inference using extreme order statistics. The Annals of Statistics 3(1): 119–131CrossRefGoogle Scholar
  33. Rasmussen P. F. (2001) Generalized probability weighted moments: application to the generalized Pareto distribution. Water Resources Research 37(6): 1745–1751CrossRefGoogle Scholar
  34. Smith R. L. (1985) Maximum likelihood estimation in a class of non-regular cases. Biometrika 72: 67–90CrossRefGoogle Scholar
  35. Zangwill W. (1963) Non-linear programming via penalty functions. Management Science 13: 344–358CrossRefGoogle Scholar
  36. Zhang J. (2007) Likelihood moment estimation for the generalized Pareto distribution. Australian & New Zealand Journal of Statistics 49(1): 69–77CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Department of MathematicsSoutheast UniversityNanjingChina
  2. 2.School of EconomicsShandong UniversityJinanChina

Personalised recommendations