Computational Economics

, Volume 36, Issue 4, pp 365–384 | Cite as

A New Approach to Unit Root Testing

  • Helmut Herwartz
  • Florian Siedenburg


A novel simulation based approach to unit root testing is proposed in this paper. The test is constructed from the distinct orders in probability of the OLS parameter estimates obtained from a spurious and an unbalanced regression, respectively. While the parameter estimate from a regression of two integrated and uncorrelated time series is of order O p (1), the estimate is of order O p (T −1) if the dependent variable is stationary. The test statistic is constructed as an interquantile range from the empirical distribution obtained from regressing the standardized data sufficiently often on controlled random walks. GLS detrending (Elliott et al., Econometrica 64(4):813–836, 1996) and spectral density variance estimators (Perron and Ng, Econom Theory 14(5):560–603, 1998) are applied to account for deterministic terms and residual autocorrelation in the data. A Monte Carlo study confirms that the proposed test has favorable empirical size properties and is powerful in local-to-unity neighborhoods. As an empirical illustration, we test the purchasing power parity hypothesis for a sample of G7 economies.


Unit root tests Simulation based test Simulation study PPP hypothesis 

JEL Classification

C22 C12 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aparico F., Escribano A., Sipolis A. E. (2006) Range unit-root (RUR) tests: Robust against nonlinearities, error distributions, structural breaks and outliers. Journal of Time Series Analysis 27(4): 545–576CrossRefGoogle Scholar
  2. Breitung J. (2002) Nonparametric tests for unit roots and cointegration. Journal of Econometrics 108(2): 343–363CrossRefGoogle Scholar
  3. Breitung J., Gouriéroux C. (1997) Rank tests for unit roots. Journal of Econometrics 81(1): 7–27CrossRefGoogle Scholar
  4. Dickey D. A., Fuller W. A. (1979) Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74: 427–431CrossRefGoogle Scholar
  5. Elliott G., Rothenberg T. J., Stock J. H. (1996) Efficient tests for an autoregressive unit root. Econometrica 64(4): 813–836CrossRefGoogle Scholar
  6. Granger C. W. J., Newbold P. (1974) Spurious regressions in econometrics. Journal of Econometrics 2(2): 111–120CrossRefGoogle Scholar
  7. Heston, A., Summers, R., & Aten, B. (2006). Penn World Tables version 6.2, Center for International Comparisons of Production, Income and Prices at the University of Pennsylvania.Google Scholar
  8. Newey W. K., West K. D. (1987) A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix.. Econometrica 55(3): 703–708CrossRefGoogle Scholar
  9. Ng S., Perron P. (2001) Lag length selection and the construction of unit root tests with good size and power. Econometrica 69(6): 1519–1554CrossRefGoogle Scholar
  10. Park J. Y. (1990) Testing for unit roots and cointegration by variable addition. In: Fromby T., Rhodes F. (eds) Advances in Econometrics: Cointegration, spurious regression and unit roots. Jai Press, CambridgeGoogle Scholar
  11. Park, J. Y., & Choi, B. (1988). A new approach to testing for a unit root, CAE Working Paper No. 88-23, Cornell University, Ithaca, NY.Google Scholar
  12. Park, J. Y., & Ouliaris, S., & Choi, B. (1988). Spurious regression and tests for cointegration, CAE Working Paper No. 88-07, Cornell University, Ithaca, NY.Google Scholar
  13. Perron P., Ng S. (1996) Useful modifications to some unit root tests with dependent errors and their local asymptotic properties. Review of Economic Studies 63(3): 435–463CrossRefGoogle Scholar
  14. Perron P., Ng S. (1998) An autoregressive spectral density estimator at frequency zero for nonstationaryity tests. Econometric Theory 14(5): 560–603CrossRefGoogle Scholar
  15. Perron P., Qu Z. (2007) A simple modification to improve the finite sample properties of Ng and Perron’s unit root test. Economics Letters 94(1): 12–19CrossRefGoogle Scholar
  16. Phillips P. C. B. (1986) Understanding spurious regressions in econometrics. Journal of Econometrics 33(3): 331–340CrossRefGoogle Scholar
  17. Phillips P. C. B. (1987) Time series regression with a unit root. Econometrica 55(2): 277–301CrossRefGoogle Scholar
  18. Phillips P. C. B., Perron P. (1988) Testing for a unit root in time series regression. Biometrika 75(2): 335–346CrossRefGoogle Scholar
  19. Said S. E., Dickey D. A. (1984) Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 71(3): 599–607CrossRefGoogle Scholar
  20. Silverman B. W. (1986) Density estimation. Chapman and Hall, LondonGoogle Scholar
  21. Stock J. H. (1999) A class of tests for integration and cointegration. In: Engle R. F., White H. (eds) Cointegration, causality and forecasting. A Festschrift in honour of Clive W. J. Granger. Oxford University Press, OxfordGoogle Scholar
  22. Taylor A. M., Taylor M. P. (2004) The purchasing power parity debate. Journal of Economic Perspectives 18(4): 135–158CrossRefGoogle Scholar
  23. Wagner M. (2008) On PPP, unit roots and panels. Empirical Economics 35(2): 229–249CrossRefGoogle Scholar
  24. White H. (2000) Asymptotic theory for econometricians. Academic Press, San DiegoGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Institute for Statistics and EconometricsChristian-Albrechts-University of KielKielGermany

Personalised recommendations