Computational Economics

, Volume 39, Issue 1, pp 1–12 | Cite as

An Integer Programming Model for Pricing American Contingent Claims under Transaction Costs

  • M. Ç. Pınar
  • A. Camcı


We study the problem of computing the lower hedging price of an American contingent claim in a finite-state discrete-time market setting under proportional transaction costs. We derive a new mixed-integer linear programming formulation for calculating the lower hedging price. The linear programming relaxation of the formulation is exact in frictionless markets. Our results imply that it might be optimal for the holder of several identical American claims to exercise portions of the portfolio at different time points in the presence of proportional transaction costs while this incentive disappears in their absence.


American Contingent Claims Transaction Costs Mixed-integer Programming Linear Programming Martingales Incomplete Markets Pricing Hedging Dividends 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baxter S., Chacon R. (1977) Compactness of stopping times. Zeitschrift für die Wahrscheinlichkeit und Verwandte Gebiete 40: 169–181CrossRefGoogle Scholar
  2. Bensoussan A. (1984) On the theory of option pricing. Acta Applicanda Mathematica 2: 139–158Google Scholar
  3. Bouchard B., Temam E. (2005) On the hedging of American options in discrete time markets with proportional transaction costs. Electronic Journal of Probability 10(22): 746–760Google Scholar
  4. Buckdahn R., Hu Y. (1998) Pricing of American contingent claims with jump stock price and constrained portfolios. Mathematics of Operations Research 23: 177–203CrossRefGoogle Scholar
  5. Camcı A., Pınar M.Ç. (2009) Pricing American contingent claims by stochastic linear programming. Optimization 58: 627–640CrossRefGoogle Scholar
  6. Chalasani P., Jha S. (2001) Randomized stopping times and American option pricing with transaction costs. Mathematical Finance 11: 33–77CrossRefGoogle Scholar
  7. Davis M., Zariphopoulou T. (1995) American options and transaction fees. In: Davis M. (eds) The IMA Volumes in mathematics and its applications (Vol. 65). Springer-Verlag, Berlin, pp 47–62Google Scholar
  8. Detemple, J.(2005). American style derivatives: Valuation and computation. Boca Raton: Chapman & Hall/CRC Financial Mathematics Series.Google Scholar
  9. Edirisinghe C., Naik V., Uppal R. (1993) Optimal replication of options with transaction costs and trading restrictions. Journal of Financial and Quantitative Analysis 28: 117–138CrossRefGoogle Scholar
  10. Föllmer H., Schied A. (2004) Stochastic finance: An introduction in discrete time. De Gruyter studies in mathematics (2nd ed., Vol. 27). W. De Gruyter and Co, BerlinGoogle Scholar
  11. Harrison J., Kreps D. (1979) Martingales and arbitrage in multiperiod security markets. Journal of Economic Theory 20: 381–408CrossRefGoogle Scholar
  12. Jaschke, S. (1996). Super-hedging and arbitrage pricing in markets with transaction and trading constraints. Discussion paper 1998-11, SFB 373, Humboldt-Universität Berlin.Google Scholar
  13. Karatzas I. (1988) On the pricing of American options. Applied Mathematics and Optimization 17: 37–60CrossRefGoogle Scholar
  14. Karatzas I., Kou S.G. (1998) Hedging American contingent claims with constrained portfolios. Finance and Stochastics 2: 215–258CrossRefGoogle Scholar
  15. King A.J. (2002) Duality and martingales: A stochastic programming perspective on contingent claims. Mathematical Programming Series B 91: 543–562CrossRefGoogle Scholar
  16. Koehl P.-F., Pham H., Touzi N. (1999) Hedging in discrete-time under transaction costs and continuus-time limit. Journal of Applied Probability 36: 163–178CrossRefGoogle Scholar
  17. Myeni R. (1992) The pricing of the American option. Annals of Applied Probability 2: 1992Google Scholar
  18. Ortu F. (2001) Arbitrage, linear programming and martingales in securities markets with bid-ask spreads. Decisions in Economics and Finance 24: 79–105CrossRefGoogle Scholar
  19. Pennanen, T., & King, A. (2006). Arbitrage pricing of American contingent claims in incomplete markets—a convex optimization approach. Working paper, June 2006.
  20. Roux, A., & Zastawniak, T. (2006). American options under proportional transaction costs: Seller’s price algorithm, hedging strategy and optimal stopping. Preprint, University of York.Google Scholar
  21. Tokarz K., Zastawniak T. (2006) American contingent claims under small proportional transaction costs. Journal of Mathematical Economics 43: 65–85CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Department of Industrial EngineeringBilkent UniversityAnkaraTurkey

Personalised recommendations