Computational Economics

, Volume 37, Issue 2, pp 133–168 | Cite as

Eliciting Preferences on Multiattribute Societies with a Choquet Integral



This paper reexamines the construction of indicators of standards of living, by focussing on the challenges raised by the subjectivity and the multidimensionality of living conditions. For that purpose, we apply Choquet integral-based multiattribute value theory to the elicitation, from rankings of multiattribute hypothetical societies, of individual preferences on different dimensions of living conditions. A simple application of the proposed approach highlights that preferences on multiattribute societies cannot, in general, be represented by an additive value model, as there exist complementarities and redundancies between different dimensions of standards of living. Our elicitation exercise reveals also a strong heterogeneity of individual preferences on hypothetical societies. Finally, we explore how elicited preferences can be used to cast a new light on the ranking of actual societies.


Standards of living Indicators Measurement Multiattribute value theory Choquet integral 

JEL Classification

C44 D69 I31 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10614_2009_9196_MOESM1_ESM.pdf (123 kb)
ESM 1 (PDF 124 kb)


  1. Bana e Costa C. A., Vansnick J. C. (1999) Preference relations in MCDM. In: Gal T., Hanne T., Steward T. (eds) MultiCriteria decision making: Advances in MCDM models, algorithms, theory and applications. Kluwer, DordretchtGoogle Scholar
  2. Becker G. S., Philipson T. J., Soares R. R. (2005) The quantity and quality of life and the evolution of world inequality. American Economic Review 95(1): 277–291CrossRefGoogle Scholar
  3. Bouyssou D., Pirlot M. (2004) Preferences for multi-attributed alternatives: Traces, dominance, and numerical representations. Journal of Mathematical Psychology 48: 167–185CrossRefGoogle Scholar
  4. Browning M., Hansen L. P., Heckman J. J. (1999) Micro data and general equilibrium models. In: Gal T., Steward T., Hanne T. (eds) Handbook of macroeconomics, Vol. 1A. Elsevier Science, New YorkGoogle Scholar
  5. Chateauneuf A., Jaffray J. -Y. (1989) Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Mathematical Social Sciences 17(3): 263–283CrossRefGoogle Scholar
  6. Choquet G. (1953) Theory of capacities. Annales de l’Institut Fourier 5: 131–295Google Scholar
  7. Dasgupta P. (1993) An inquiry into well-being and destitution. Oxford University Press, OxfordGoogle Scholar
  8. European Health Expectancy Monitoring Unit (EHEMU). (2007). Estimations of health expectancy at age 65 in European Union countries in 2004, Table 4.Google Scholar
  9. Finkelstein L. (1982) Theory and philosophy of measurement. In: Sydenham P. H. (eds) Handbook of measurement science, Vol. 1. Wiley, LondonGoogle Scholar
  10. Grabisch M. (1997) k-Order additive discrete fuzzy measure and their representation. Fuzzy Sets and Systems 92: 131–295CrossRefGoogle Scholar
  11. Grabisch M., Kojadinovic I., Meyer P. (2008) A review of capacity identification methods for Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package. European Journal of Operational Research 186(2): 766–785CrossRefGoogle Scholar
  12. Jacquet-Lagrèze E., Siskos Y. (1982) Assessing a set of additive utility functions for multicriteria decision making: The UTA method. European Journal of Operational Research 10: 151–164CrossRefGoogle Scholar
  13. Keeney R. L., Raiffa H. (1976) Decision with multiple objectives. Wiley, New YorkGoogle Scholar
  14. Kojadinovic I. (2007) Minimum variance capacity identification. European Journal of Operational Research 177(1): 498–514CrossRefGoogle Scholar
  15. Kojadinovic I., Marichal J.-L., Roubens M. (2005) An axiomatic approach to the definition of the entropy of a discrete Choquet capacity. Information Sciences 172: 131–153CrossRefGoogle Scholar
  16. Krantz D. H., Luce R. D., Suppes P., Tversky A. (1971) Foundations of measurement, Vol. 1: Additive and polynomial representations. Academic Press, New YorkGoogle Scholar
  17. Labreuche C., Grabisch M. (2003) The Choquet integral for the aggregation of interval scales in multicriteria decision making. Fuzzy Sets and Systems 137: 11–16CrossRefGoogle Scholar
  18. Marichal J.-L. (2000a) An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria. IEEE Transactions on Fuzzy Systems 8(6): 800–807CrossRefGoogle Scholar
  19. Marichal J.-L. (2000b) Behavioral analysis of aggregation in multicriteria decision aid. In: Fodor J., De Baets B., Perny P. (eds) Preferences and decisions under incomplete knowledge. Physica-Verlag, Heidelberg, pp 153–178Google Scholar
  20. Marichal J.-L. (2004) Tolerant or intolerant character of interacting criteria in aggregation by the Choquet integral. European Journal of Operational Research 155(3): 771–791CrossRefGoogle Scholar
  21. Miller G. A. (1956) The magical number seven, plus or minus two: Some limits on our capacity for processing information. The Psychological Review 63: 81–97CrossRefGoogle Scholar
  22. Murofushi, T., & Soneda, S. (1993). Techniques for reading fuzzy measures (iii): Interaction index. In 9th Fuzzy System Symposium, pp. 693–696, Saporo, Japan.Google Scholar
  23. Nordhaus W. D. (2003) The health of nations: The contribution of improved health to living standards. In: Murphy K. M., Topel R. H. (eds) Measuring the gains from medical research. University of Chicago Press, ChicagoGoogle Scholar
  24. North D. C. (1994) Economic performance through time. American Economic Review 84: 359–368Google Scholar
  25. OECD Labour Statistics. (2007). Average usual weekly hours worked on the main job.
  26. OECD National Accounts Statistics. (2007). Actual individual consumption per head, euros.
  27. Osberg L., Sharpe A. (2002) An index of economic well-being for selected oecd countries. Review of Income and Wealth 48(3): 291–316CrossRefGoogle Scholar
  28. Osberg L., Sharpe A. (2005) How should we measure the economic aspects of well-being?. Review of Income and Wealth 51(2): 311–336CrossRefGoogle Scholar
  29. Shapley L.S. (1953) A value for n-person games. In: H. W. Kuhn, A. W. Tucker (eds) Contributions to the theory of games, Vol. 2. Annals of Mathematics Studies, No. 28. Princeton University Press, Princeton, NJ, pp 307–317Google Scholar
  30. Siskos Y., Grigoroudis E., Matsatsinis N. F. (2005) Uta methods. In: Figueira J., Greco S., Ehrgott M. (eds) Multiple criteria decision analysis: State of the art surveys. Springer Verlag, Boston, pp 297–344Google Scholar
  31. Siskos Y., Yannacopoulos D. (1985) UTASTAR: An ordinal regression method for building additive value functions. Investigacao Operacional 5(1): 39–53Google Scholar
  32. Smith, A. (1776). An inquiry into the nature and causes of the wealth of nations. Printed for W. Strahan and T. Cadell, London.Google Scholar
  33. Sugeno, M. (1974). Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of Technology, Tokyo, Japan.Google Scholar
  34. Tversky A., Kahneman D. (1981) The framing of decisions and the psychology of choice. Science 211: 453–458CrossRefGoogle Scholar
  35. United Nations Development Program (UNDP). (1990). Human development report. Oxford University Press, New YorkGoogle Scholar
  36. United Nations. (2007). United Nations millennium development goals indicators, goal 7 (sustainable development).
  37. United Nations Development Program (UNDP). (2008). Human development report 2007/2008. Oxford University Press, New YorkGoogle Scholar
  38. Usher D. (1973) An imputation to the measure of economic growth for changes in life expectancy. In: M. Moss (eds) The measurement of economic and social performance, Vol. 38 of NBER Studies in Income and Wealth. Columbia University Press, Chicago, pp 193–226Google Scholar
  39. Usher D. (1980) The measurement of economic growth. Columbia University Press, New YorkGoogle Scholar
  40. Vincke P. (1992) Multicriteria decision-aid. Wiley, ChichesterGoogle Scholar
  41. Wakker P. P. (1989) Additive representations of preferences: A new foundation of decision analysis. Kluwer Academic Publishers, DordrechtGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Institut TELECOM, TELECOM BretagneUMR CNRS 3192 Lab-STICCBrest Cedex 3France
  2. 2.Université européenne de BretagneBretagneFrance
  3. 3.Paris School of EconomicsEcole Normale SupérieureParisFrance

Personalised recommendations