Computational Economics

, Volume 32, Issue 3, pp 295–315 | Cite as

The Strategic Exploitation of Limited Information and Opportunity in Networked Markets

  • Dan Ladley
  • Seth Bullock


This paper studies the effect of constraining interactions within a market. A model is analysed in which boundedly rational agents trade with and gather information from their neighbours within a trade network. It is demonstrated that a trader’s ability to profit and to identify the equilibrium price is positively correlated with its degree of connectivity within the market. Where traders differ in their number of potential trading partners, well-connected traders are found to benefit from aggressive trading behaviour. Where information propagation is constrained by the topology of the trade network, connectedness affects the nature of the strategies employed.


Trade network Agent-based computational economics Information Strategy 

JEL Classifications

D85 D83 D40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axtell R. (2005) The complexity of exchange. Economic Journal 115(504): F193–F210CrossRefGoogle Scholar
  2. Barabasi, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509.CrossRefGoogle Scholar
  3. Bell, A. M. (1998). Bilateral trading on a network: A simulation study. In: Working Notes: Artificial Societies and Computational Markets, Autonomous Agents ’98 Workshop, Minneapolis, St. Paul, pp. 31–36.Google Scholar
  4. Brock W.A., Hommes C.H. (1997) A rational route to randomness. Econometrica 65: 1059–1096CrossRefGoogle Scholar
  5. Cliff D. (2003) Explorations in evolutionary design of online auction market mechanism. Journal of Electronic Commerce Research and Application 2(2): 162–175CrossRefGoogle Scholar
  6. Cliff, D., & Bruten, J. (1997). Minimal-intelligence agents for bargaining behaviors in market-based environments. Technical Report HPL-97-91, HP Labs.Google Scholar
  7. Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: Social science from the bottom up. Washington, DC: Brookings Institute Press; Cambridge, MA: MIT Press.Google Scholar
  8. Evstigneev I.V., Taksar M. (1994) Stochastic equilibria on graphs, I. Journal of Mathematical Economics 23(5): 401–433CrossRefGoogle Scholar
  9. Evstigneev I.V., Taksar M. (1995) Stochastic equilibria on graphs, II. Journal of Mathematical Economics 24(4): 383–406CrossRefGoogle Scholar
  10. Evstigneev I.V., Taksar M. (2002) Equilibrium states of random economies with locally interacting agents and solutions to stochastic variational inequalities in \({\langle {L}_{1}, {L}_{\infty} \rangle}\). Annals of Operations Research 114(1–4): 145–165CrossRefGoogle Scholar
  11. Falbo P., Grassi R. (2004) Equilibrium prices on a financial graph. Computational Economics 24(2): 117–157CrossRefGoogle Scholar
  12. Gode D.K., Sunder S. (1997) What makes markets allocationally efficient? . he Quarterly Journal of Economics 112(2): 603–630CrossRefGoogle Scholar
  13. Howitt P., Clower R. (2000) The emergence of economic organization. Journal of Economic Behavior and Organization 41(1): 55–84CrossRefGoogle Scholar
  14. Kirman A.P., Vriend N.J. (2001) Evolving market structure: An ACE model of price dispersion and loyalty. Journal of Economic Dynamics and Control 25(3–4): 459–502CrossRefGoogle Scholar
  15. Lensberg T., Schenk-Hoppé K.R. (2007) On the evolution of investment strategies and the Kelly rule – a Darwinian approach. Review of Finance 11: 25–50CrossRefGoogle Scholar
  16. Lovaglia M.J., Skvoretz J., Willer D., Markovsky B. (1995) Negociated exchange in social networks. Social Forces 74(1): 123–155CrossRefGoogle Scholar
  17. Markovsky B., Willer D., Patton T. (1988) Power relations in exchange networks. American Sociological Review 53(2): 220–236CrossRefGoogle Scholar
  18. Newman M.E.J. (2003) The structure and function of complex networks. SIAM Review 45(2): 167–256CrossRefGoogle Scholar
  19. Noble J., Davy S., Franks D.W. (2004) Effects of the topology of social networks on information transmission. In: Schaal S., Ijspeert A.J., Billard A., Vijayakumar S., Hallam J., Meyer J.-A.(eds) Eighth International Conference on Simulation of Adaptive Behavior. MIT Press, Cambridge, MA, pp 395–404Google Scholar
  20. Papadimitriou C.H. (1994) On the complexity of the parity argument and other inefficient proofs of existence. Journal of Computer and System Sciences 48(3): 498–532CrossRefGoogle Scholar
  21. Scarf H.E. (1973) Computation of economic equilibrium. Yale Universiy Press (with T. Hansen), New Haven, CTGoogle Scholar
  22. Smith V.L. (1962) An experimental study of competitive market behaviour. Journal of Political Economy 70: 111–137CrossRefGoogle Scholar
  23. Tassier, T., Menczer, F. (in press). Social network structure, segregation, and equality in a labour market with referral hiring. Journal of Economic Behaviour and Organisation.Google Scholar
  24. Tesfatsion L. (2001) Structure, behavior, and market power in an evolutionary labor market with adaptive search. Journal of Economic Dynamics and Control 25(3–4): 419–457CrossRefGoogle Scholar
  25. Vriend, N. J. (2006). ACE models of endogenous interactions. In: L. Tesfatsion & K. L. Judd (Eds.), Handbook of computational economics, Vol. 2, Chap. 21 (pp. 1047–1079). Elsevier.Google Scholar
  26. Watts D., Strogatz S. (1998) Collective dynamics of “small-world” networks. Nature 393: 440–442CrossRefGoogle Scholar
  27. Widrow B., Hoff M.E. (1960) Adaptive switching circuits. IRE WESCON Convention Record 4: 96–104Google Scholar
  28. Wilhite A. (2001) Bilateral trade and ‘small-world’ networks. Computational Economics 18: 49–64CrossRefGoogle Scholar
  29. Wilhite, A. (2006). Economic activity on fixed networks. In L. Tesfatsion & K. L. Judd (Eds.), Handbook of computational economics, Vol. 2, Chap. 20 (pp. 1013–1045). Elsevier.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Leeds University Business SchoolUniversity of LeedsLeedsUK
  2. 2.School of Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK

Personalised recommendations