, Volume 13, Issue 3, pp 343–384 | Cite as

Expressive power and abstraction in Essence

  • David G. Mitchell
  • Eugenia Ternovska


Development of languages for specifying or modelling problems is an important direction in constraint modelling. To provide greater abstraction and modelling convenience, these languages are becoming more syntactically rich, leading to a variety of questions about their expressive power. In this paper, we consider the expressiveness of Essence, a specification language with a rich variety of syntactic features. We identify natural fragments of Essence that capture the complexity classes P, NP, all levels \(\Sigma_i^p\) of the polynomial-time hierarchy, and all levels k-NEXP of the nondeterministic exponential-time hierarchy. The union of these classes is the very large complexity class ELEMENTARY. One goal is to begin to understand which features play a role in the high expressive power of the language and which are purely features of convenience. We also discuss the formalization of arithmetic in Essence and related languages, a notion of capturing NP-search which is slightly different than that of capturing NP, and a conjectured limit to the expressive power of Essence. Our study is an application of descriptive complexity theory, and illustrates the value of taking a logic-based view of modelling and specification languages.


Expressive power Abstraction Essence Constraint modelling languages Descriptive complexity Model expansion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cadoli, M., Ianni, G., Palopoli, L., Schaerf, A., & Vasile, D. (2000). NP-SPEC: An executable specification language for solving all problems in NP. Computer Languages, 26, 165–195.CrossRefMATHGoogle Scholar
  2. 2.
    Cadoli, M., & Mancini, T. (2006). Automated reformulation of specifications by safe delay of constraints. Artificial Intelligence, 170(8–9), 779–801.CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Denecker, M., & Ternovska, E. (2008). A logic of non-monotone inductive definitions. ACM Transactions on Computational Logic, 9(2).Google Scholar
  4. 4.
    East, D., & Truszczynski, M. (2006). Predicate-calculus based logics for modeling and solving search problems. ACM Transactions on Computational Logic, 7(1), 38–83.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Ebbinghaus, H.-D., & Flum, J. (1995). Finite model theory. Heidelberg: Springer.MATHGoogle Scholar
  6. 6.
    Enderton, H. B. (2001). A mathematical introduction to logic. New York: Harcourt/Academic.MATHGoogle Scholar
  7. 7.
    Fagin, R. (1974). Generalized first-order spectra and polynomial-time recognizable sets. In R. Karp (Ed.), Complexity and computation, SIAM-AMS Proc. (Vol. 7, pp. 43–73). Providence: AMS.Google Scholar
  8. 8.
    Flener, P., Pearson, J., & Agren, M. (2004). Introducing ESRA, a relational language for modelling combinatorial problems. In M. Bruynooghe (Ed.), Logic based program synthesis and transformation: 13th international symposium (LOPSTR ’03), revised selected papers, lecture notes in computer science (Vol. 3018, pp. 214–232). Heidelberg: Springer.Google Scholar
  9. 9.
    Friedman, H. M. (1999). Some decision problems of enormous complexity. In Proceedings, 14th symposium on logic in computer science (LICS ’99) (pp. 2–12).Google Scholar
  10. 10.
    Frisch, A. M., Grum, M., Jefferson, C., Martinez Hernandez, B., & Miguel, I. (2005). The essence of Essence: A constraint language for specifying combinatorial problems. In Proc., fourth international workshop on modelling and reformulating constraint satisfaction problems (pp. 73–88) (October).Google Scholar
  11. 11.
    Frisch, A. M., Grum, M., Jefferson, C., Martinez Hernandez, B., & Miguel, I. (2007). The design of Essence: A constraint language for specifying combinatorial problems. In Proc., twentieth international joint conference on artificial intelligence (IJCAI ’07) (pp. 80–87).Google Scholar
  12. 12.
    Frisch, A. M., Harvey, W., Jefferson, C., Martínez Hernández, B., & Miguel, I. (2008). Essence: A constraint language for specifying combinatorial problems. Constraints, 13(3).Google Scholar
  13. 13.
    Frisch, A. M., Jefferson, C., Martínez Hernández, B., & Miguel, I. (2005). The rules of constraint modelling. In Proc., 19th international joint conference on artificial intelligence (pp. 109–116).Google Scholar
  14. 14.
    Frisch, A. M., Jefferson, C., Martínez Hernández, B., & Miguel, I. (2007). Symmetry in the generation of constraint models. In Proceedings of the international symmetry conference.Google Scholar
  15. 15.
    Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP -completeness. San Francisco: W. H. Freeman.MATHGoogle Scholar
  16. 16.
    Gebser, M., Schaub, T., & Thiele, S. (2007). Gringo: A new grounder for answer set programming. In C. Baral, G. Brewka, & J. S. Schlipf (Eds.), Proc., 9th international conference on logic programming and nonmonotonic reasoning (LPNMR ’07), lecture notes in computer science (Vol. 4483, pp. 266–271). Heidelberg: Springer.CrossRefGoogle Scholar
  17. 17.
    Grädel, E., (1992). Capturing complexity classes by fragments of second order logic. Theoretical Computer Science, 101, 35–57.CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Grädel, E., (2007). Finite model theory and descriptive complexity, chapter 3. E. Grädel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Y. Vardi, et al. (Eds.), Finite model theory and its applications (pp. 125–230). Heidelberg: Springer.Google Scholar
  19. 19.
    Grädel, E., & Gurevich, Y. (1998). Metafinite model theory. Information and Computation, 140(1), 26–81.CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Immerman, N. (1986). Relational queries computable in polytime. Information and Control, 68, 86–104.CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Immerman, N. (1999). Descriptive complexity. New York: Springer.MATHGoogle Scholar
  22. 22.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., et al. (2006). The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic, 7(3).Google Scholar
  23. 23.
    Libkin, L. (2004). Elements of finite model theory. Heidelberg: Springer.MATHGoogle Scholar
  24. 24.
    Mancini, T., & Cadoli, M. (2005). Detecting and breaking symmetries by reasoning on problem specifications. In Proc., 6th international symposium on abstraction, reformulation and approximation (SARA 2005), lecture notes in computer science (Vol. 3607, pp. 165–181). Heidelberg: Springer.Google Scholar
  25. 25.
    Mariën, M., Wittocx, J., & Denecker, M. (2006). The IDP framework for declarative problem solving. In E. Giunchiglia, V. Marek, D. Mitchell, & E. Ternovska (Eds.), Proc., search and logic: Answer set programming and SAT (LaSh ’06) (pp. 19–34).Google Scholar
  26. 26.
    Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P. J., de la Banda, M. G., & Wallace, M. (2008). The design of the zinc modelling language. Constraints, 13(3).Google Scholar
  27. 27.
    Mills, P., Tsang, E. P. K., Williams, R., Ford, J., & Borrett, J. (1998). EaCL 1.0: An easy abstract constraint programming language. Technical report CSM-321, University of Essex (December).Google Scholar
  28. 28.
    Mitchell, D. G., & Ternovska, E. (2005). A framework for representing and solving NP search problems. In Proc. of the 20th national conf. on artificial intelligence (AAAI ’05) (pp. 430–435).Google Scholar
  29. 29.
    Mitchell, D., Ternovska, E., Hach, F., & Mohebali, R. (2006). Model expansion as a framework for modelling and solving search problems. Technical report TR 2006-24, School of Computing Science, Simon Fraser University.Google Scholar
  30. 30.
    Papadimitriou, C. (1994). Computational complexity. Reading: Addison-Wesley.MATHGoogle Scholar
  31. 31.
    Syrjänen, T. (2000). Lparse 1.0 user’s manual. Available from:
  32. 32.
    Van Hentenryck, P. (1999). The OPL optimization programming language. Cambridge: MIT.Google Scholar
  33. 33.
    Vardi, M. Y. (1982). The complexity of relational query languages. In 14th ACM symp. on theory of computing. Heidelberg: Springer.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Computational Logic LaboratorySimon Fraser UniversityBurnabyCanada

Personalised recommendations