, Volume 12, Issue 3, pp 263–291 | Cite as

Local Search-based Hybrid Algorithms for Finding Golomb Rulers

  • Carlos Cotta
  • Iván Dotú
  • Antonio J. Fernández
  • Pascal Van Hentenryck


The Golomb ruler problem is a very hard combinatorial optimization problem that has been tackled with many different approaches, such as constraint programming (CP), local search (LS), and evolutionary algorithms (EAs), among other techniques. This paper describes several local search-based hybrid algorithms to find optimal or near-optimal Golomb rulers. These algorithms are based on both stochastic methods and systematic techniques. More specifically, the algorithms combine ideas from greedy randomized adaptive search procedures (GRASP), scatter search (SS), tabu search (TS), clustering techniques, and constraint programming (CP). Each new algorithm is, in essence, born from the conclusions extracted after the observation of the previous one. With these algorithms we are capable of solving large rulers with a reasonable efficiency. In particular, we can now find optimal Golomb rulers for up to 16 marks. In addition, the paper also provides an empirical study of the fitness landscape of the problem with the aim of shedding some light about the question of what makes the Golomb ruler problem hard for certain classes of algorithm.


Constraint programming Local search Tabu search Evolutionary algorithms Golomb rulers Clustering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adenso-Díaz, B., & Laguna, M. (2006). Fine tuning of algorithms using fractional experimental designs and local search. Operations Research, 54(1), 99–114.CrossRefGoogle Scholar
  2. 2.
    Babcock, W. C. (1953). Intermodulation interference in radio systems. Bell Systems Technical Journal, 32, 63–73.Google Scholar
  3. 3.
    Barták, R. (2003). Practical constraints: A tutorial on modelling with constraints. In J. Figwer (Ed.), 5th workshop on constraint programming for decision and control (pp. 7–17). Poland: Gliwice.Google Scholar
  4. 4.
    Bean, J. (1994). Genetic algorithms and random keys for sequencing and optimization. ORSA Journal on Computing, 6, 154–160.MATHGoogle Scholar
  5. 5.
    Bierwirth, C., Mattfeld, D.C., & Watson, J.-P. (2004). Landscape regularity and random walks for the job shop scheduling problem. In J. Gottlieb, & G. R. Raidl (Eds.), Evolutionary computation in combinatorial optimization. Lecture Notes in Computer Science, Vol. 3004 (pp. 21–30). Berlin: Springer.Google Scholar
  6. 6.
    Birattari, M., Stützle, T. Paquete, L., & Varrentrapp, K. (2002). A racing algorithm for configuring metaheuristics. In W. B. Lagndon et al. (Eds.), 2002 Genetic and evolutionary computation conference (GECCO) (pp. 11–18). San Francisco, CA: Morgan Kaufmann.Google Scholar
  7. 7.
    Biraud, F., Blum, E., & Ribes, J. (1974). On optimum synthetic linear arrays with applications to radioastronomy. IEEE Transactions on Antennas and Propagation, 22(1), 108–109.CrossRefGoogle Scholar
  8. 8.
    Bloom, G. S., & Golomb, S. W. (1977). Aplications of numbered undirected graphs. Proceedings of the IEEE, 65(4), 562–570.CrossRefGoogle Scholar
  9. 9.
    Boese, K. D., Kahng, A. B., & Muddu, S. (1994). A new adaptive multi-start technique for combinatorial global optimizations. Operations Research Letters, 16, 101–113.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cotta, C., Dotú, I., Fernández, A. J., & Van Hentenryck, P. (2006). A memetic approach to golomb rulers. In T. P. Runarsson et al. (Eds.), Parallel problem solving from nature IX. Lecture notes in computer science, vol. 4193 (pp. 252–261). Berlin Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  11. 11.
    Cotta, C., & Fernández, A. J. (2004.) A hybrid GRASP-evolutionary algorithm approach to Golomb ruler search. In Xin Yao et al. (Eds.), Parallel problem solving from nature VIII. Lecture notes in computer science, vol. 3242 (pp. 481–490). Berlin Heidelberg: Springer.Google Scholar
  12. 12.
    Cotta, C., & Fernández, A. J. (2005). Analyzing fitness landscapes for the optimal Golomb ruler problem. In J. Gottlieb & G. R. Raidl (Eds.), Evolutionary computation in combinatorial optimization. Lecture notes in computer science, vol. 3248 (pp. 68–79). Berlin Heidelberg: Springer.Google Scholar
  13. 13.
    Cotta, C., & Troya, J. M. (2003). Embedding branch and bound within evolutionary algorithms. Applied Intelligence, 18(2), 137–153.MATHCrossRefGoogle Scholar
  14. 14.
    Díaz, D., & Codognet, P. (2000). GNU Prolog: Beyond compiling Prolog to C. In E. Pontelli, & V. Santos Costa (Eds.), 2nd International workshop on practical aspects of declarative languages (PADL’2000). Lecture notes in computer science, vol. 1753 (pp. 81–92). Boston, MA: Springer.Google Scholar
  15. 15.
    Dewdney, A. K. (1985). The search for an invisible ruler that will help radio astronomers measure the Earth, computer recreations. Scientific American, Dec: 16–26.Google Scholar
  16. 16.
    Dollas, A., Rankin, W. T., & McCracken, D. (1998). A new algorithm for Golomb ruler derivation and proof of the 19 mark ruler. IEEE Transactions on Information Theory, 44, 379–382.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Dotú, I., & Van Hentenryck, P. (2005). A simple hybrid evolutionary algorithm for finding golomb rulers. In D. W. Corne et al. (Eds.), 2005 Congress on evolutionary computation (CEC2005), vol. 3 (pp. 2018–2023). Edinburgh, Scotland: IEEE.CrossRefGoogle Scholar
  18. 18.
    Fang, R. J. F., & Sandrin, W. A. (1977). Carrier frequency assignment for non-linear repeaters. Comsat Technical Review, 7, 227–245.Google Scholar
  19. 19.
    Feeney, B. (2003) Determining Optimum and Near-optimum Golomb Rulers Using Genetic Algorithms. Master thesis, Computer Science, University College Cork (October).Google Scholar
  20. 20.
    Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search procedures. Journal of Global Optimization, 6, 109–133.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Galinier, P., Jaumard, B., Morales, R., & Pesant, G. (2001). A constraint-based approach to the Golomb ruler problem. In 3rd International workshop on integration of AI and OR techniques (CP-AI-OR’2001).Google Scholar
  22. 22.
    Garry, M., Vanderschel, D., et al. (1999). In search of the optimal 20, 21 & 22 mark Golomb rulers. GVANT project.
  23. 23.
    Gilbert, P., & Postpischil, E. (1994). There are no new homometric Golomb ruler pairs with 12 marks or less. Experimental Mathematics, 3(2), 147–152.MATHMathSciNetGoogle Scholar
  24. 24.
    Giraud-Carrier, C. (2002). Unifying learning with evolution through Baldwinian evolution and lamarckism: A case study. In H-J. Zimmermann, G. Tselentis, M. van Someren, & G. Dounias (Eds.), Advances in computational intelligence and learning: Methods and applications (pp. 159–168). Kluwer.Google Scholar
  25. 25.
    Glover, F. (1989a). Tabu search—Part I. ORSA Journal of Computing, 1(3), 190–206.MATHMathSciNetGoogle Scholar
  26. 26.
    Glover, F. (1989b). Tabu search—Part II. ORSA Journal of Computing, 2(1), 4–31.Google Scholar
  27. 27.
    Glover, F. (1997). A template for scatter search and path relinking. Lecture Notes in Computer Science, 1363, 13–54.Google Scholar
  28. 28.
    Goldberg, D. E., & Lingle Jr., D. E., (1985). Alleles, loci and the traveling salesman problem. In J. J. Grefenstette (Ed.), Proceedings of an international conference on genetic algorithms. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  29. 29.
    Houck, C., Joines, J. A., Kay, M. G., & Wilson, J. R. (1997). Empirical investigation of the benefits of partial lamarckianism. Evolutionary Computation, 5(1), 31–60.Google Scholar
  30. 30.
    Jain, A. K., Murty, N. M., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys, 31(3), 264–323.CrossRefGoogle Scholar
  31. 31.
    Jones, T. (1995). Evolutionary Algorithms, Fitness Landscapes and Search. Ph.D. Thesis, Santa Fe Institute, University of New Mexico, Alburquerque (May).Google Scholar
  32. 32.
    Jones, T., & Forrest, S. (1995). Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In L. J. Eshelman (Ed.), Proceedings of the 6th international conference on genetic algorithms (pp. 184–192). San Francisco, CA: Morgan Kaufmann.Google Scholar
  33. 33.
    Julstrom, B. A. (1999). Comparing darwinian, baldwinian, and lamarckian search in a genetic algorithm for the 4-cycle problem. In S. Brave, & A.S. Wu. (Ed.), Late breaking papers at the 1999 genetic and evolutionary computation conference, Orlando, FL (pp. 134–138).Google Scholar
  34. 34.
    Klove, T. (1989). Bounds and construction for difference triangle sets. IEEE Transactions on Information Theory, 35, 879–886 (July).CrossRefMathSciNetGoogle Scholar
  35. 35.
    Laguna, M., & Martí, R. (2003). Scatter search. Methodology and implementations in C. Boston, MA: Kluwer.Google Scholar
  36. 36.
    Lehmann, E. L., & D’Abrera, H. J. M. (1998). Nonparametrics: Statistical methods based on rRanks. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  37. 37.
    MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In 5-th Berkeley symposium on mathematical statistics and probability, vol. 1 (pp. 281–297). Berkeley: University of California Press.Google Scholar
  38. 38.
    Manderick, B., de Weger, M., & Spiessens, P. (1991). The genetic algorithm and the structure of the fitness landscape. In R. K. Belew, & L. B. Booker (Eds.), Proceedings of the fourth international conference on genetic algorithms (pp. 143–150). San Mateo, CA: Morgan Kaufmann.Google Scholar
  39. 39.
    McCracken, D. (1991). Minimum redundancy linear arrays. Senior Thesis, Duke University, Durham, NC (January).Google Scholar
  40. 40.
    Mirchandani, P., & Francis, R. (1990). Discrete location theory. New York: Wiley.MATHGoogle Scholar
  41. 41.
    Moscato, P. (1999). Memetic algorithms: A short introduction. In D. Corne, M. Dorigo, & F. Glover (Eds.), New ideas in optimization (pp. 219–234). Maidenhead, Berkshire, UK: McGraw-Hill.Google Scholar
  42. 42.
    Moscato, P. & Cotta, C. (2003). A gentle introduction to memetic algorithms. In F. Glover, & G. Kochenberger (Eds.), Handbook of metaheuristics (pp. 105–144). Boston, MA: Kluwer.CrossRefGoogle Scholar
  43. 43.
    Moscato, P., & Cotta, C. (2007). Memetic algorithms. In T. González (Ed.), Handbook of approximation algorithms and metaheuristics, chapter 27 (pp. 27-1–27-12). New York: Taylor & Francis.Google Scholar
  44. 44.
    Moscato, P., Cotta, C., & Mendes, A. (2004). Memetic algorithms. In G. C. Onwubolu, & B. V. Babu (Eds.), New optimization techniques in engineering (pp. 53–85). Berlin Heidelberg: Springer.Google Scholar
  45. 45.
    OGR project (1998)., on-going since September 14, 1998.
  46. 46.
    Pereira, F. B., Tavares, J., & Costa, E. (2003). Golomb rulers: The advantage of evolution. In F. Moura-Pires, & S. Abreu (Eds.), Progress in artificial intelligence, 11th Portuguese conference on artificial intelligence. Lecture notes in computer science, vol. 2902 (pp. 29–42). Berlin Heidelberg: Springer.Google Scholar
  47. 47.
    Prais, M., & Ribeiro, C. C. (2000a). Parameter variation in GRASP procedures. Investigación Operativa, 9, 1–20.Google Scholar
  48. 48.
    Prais, M., & Ribeiro, C. C. (2000b). Reactive GRASP: An application to a matrix decomposition problem in TDMA traffic assignment. INFORMS Journal on Computing, 12, 164–176.MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Prestwich, S. (2001). Trading completeness for scalability: Hybrid search for cliques and rulers. In Third international workshop on the integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR-01), Ashford, Kent, England (pp. 159–174).Google Scholar
  50. 50.
    Radcliffe, N. J. (1991). Equivalence class analysis of genetic algorithms. Complex Systems, 5, 183–205.MATHMathSciNetGoogle Scholar
  51. 51.
    Rankin, W. T. (1993). Optimal Golomb rulers: An exhaustive parallel search implementation. Master Thesis, Duke University Electrical Engineering Dept., Durham, NC (December).Google Scholar
  52. 52.
    Reeves, C. (1999). Landscapes, operators and heuristic search. Annals of Operational Research, 86, 473–490.MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Resende, M. G. C., & Ribeiro, C. C. (2003). Greedy randomized adaptive search procedures. In F. Glover, & G. Kochenberger (Eds.), Handbook of metaheuristics (pp. 219–249). Boston, MA: Kluwer.CrossRefGoogle Scholar
  54. 54.
    Robbins, J., Gagliardi, R., & Taylor, H. (1987). Acquisition sequences in PPM communications. IEEE Transactions on Information Theory, 33, 738–744.CrossRefGoogle Scholar
  55. 55.
    Robinson, J. P., & Bernstein, A. J. (1967). A class of binary recurrent codes with limited error propagation. IEEE Transactions on Information Theory, 13, 106–113.MATHCrossRefGoogle Scholar
  56. 56.
    Schneider, W. (2002). Golomb rulers. MATHEWS: The archive of recreational mathematics.
  57. 57.
    Shearer, J. B. (1990). Some new optimum Golomb rulers. IEEE Transactions on Information Theory, 36, 183–184 (January).CrossRefMathSciNetGoogle Scholar
  58. 58.
    Shearer, J. B. (2001). Golomb ruler table. Mathematics Department, IBM Research.
  59. 59.
    Smith, B.M., & Walsh, T. (1999). Modelling the Golomb ruler problem. In Workshop on non-binary constraints (IJCAI’99), Stockholm.Google Scholar
  60. 60.
    Soliday, S. W., Homaifar, A., & Lebby, G. L. (1995). Genetic algorithm approach to the search for Golomb rulers. In L. J. Eshelman (Ed.), 6th International conference on genetic algorithms (ICGA’95) (pp. 528–535). Pittsburgh, PA: Morgan Kaufmann.Google Scholar
  61. 61.
    Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evolution. In D. F. Jones (Ed.), 6th International congress on genetics, vol. 1 (pp. 356–366). Menasha, WI: Brooklyn Botanic Garden.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Carlos Cotta
    • 1
  • Iván Dotú
    • 2
  • Antonio J. Fernández
    • 1
  • Pascal Van Hentenryck
    • 3
  1. 1.Dept. Lenguajes y Ciencias de la Computación, E.T.S.I. InformáticaUniversidad de Málaga, Campus de TeatinosMálagaSpain
  2. 2.Dept. Ingeniería InformáticaUniversidad Autónoma de MadridMadridSpain
  3. 3.Brown UniversityProvidenceUSA

Personalised recommendations