Advertisement

Constraints

, Volume 11, Issue 2–3, pp 115–137 | Cite as

Symmetry Definitions for Constraint Satisfaction Problems

  • David Cohen
  • Peter Jeavons
  • Christopher Jefferson
  • Karen E. Petrie
  • Barbara M. Smith
Article

Abstract

We review the many different definitions of symmetry for constraint satisfaction problems (CSPs) that have appeared in the literature, and show that a symmetry can be defined in two fundamentally different ways: as an operation preserving the solutions of a CSP instance, or else as an operation preserving the constraints. We refer to these as solution symmetries and constraint symmetries. We define a constraint symmetry more precisely as an automorphism of a hypergraph associated with a CSP instance, the microstructure complement. We show that the solution symmetries of a CSP instance can also be obtained as the automorphisms of a related hypergraph, the k-ary nogood hypergraph and give examples to show that some instances have many more solution symmetries than constraint symmetries. Finally, we discuss the practical implications of these different notions of symmetry.

Keywords

Constraint satisfaction problems Symmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguirre, A. (1992). How to use symmetries in Boolean constraint solving. In F. Benhamou & A. Colmerauer (Eds.), Constraint Logic Programming: Selected Research (pp. 287–306). MIT Press.Google Scholar
  2. 2.
    Backofen, R., & Will, S. (1999). Excluding symmetries in constraint-based search. In J. Jaffar (Ed.), Principles and Practice of Constraint Programming-CP’99, LNCS 1713, (pp. 73–87). Berlin Heidelberg New York: Springer.Google Scholar
  3. 3.
    Benhamou, B. (1994). Study of symmetry in constraint satisfaction problems. In Proceedings of the 2nd Workshop on Principles and Practice of Constraint Programming, {PPCP’94} (pp. 246–254)Google Scholar
  4. 4.
    Benhamou, B., & Sais, L. (1992). Theoretical study of symmetries in propositional calculus and applications. In D. Kapur (Ed.), Automated Deduction—CADE-11, LNAI 607, (pp. 281–294). Berlin Heidelberg New York: Springer.Google Scholar
  5. 5.
    Bessière, C., Hebrard, E., Hnich, B., & Walsh, T. (2004) The tractability of global constraints. In M. Wallace (Ed.), Principles and Practice of Constraint Programming—CP 2004, Vol. LNCS 3258, (pp. 716–720). Berlin Heidelberg New York: Springer.Google Scholar
  6. 6.
    Brown, C. A., Finkelstein, L., & Purdom, J. P. W. (1988). Backtrack searching in the presence of symmetry. In T. Mora (Ed.), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, LNCS 357, (pp. 99–110). Berlin Heidelberg New York: Springer.Google Scholar
  7. 7.
    Crawford, J., Ginsberg, M., Luks, E., & Roy, A. (1996). Symmetry-breaking predicates for search problems. In Proceedings KR’96 (pp. 149–159).Google Scholar
  8. 8.
    Fahle, T., Schamberger, S., & Sellmann, M. (2001). Symmetry breaking. In T. Walsh (Ed.), Principles and Practice of Constraint Programming—CP 2001, LNCS 2239, (pp. 225–239). Berlin Heidelberg New York: Springer.Google Scholar
  9. 9.
    Focacci, F., & Milano, M. (2001). Global cut framework for removing symmetries. In T. Walsh (Ed.), Principles and Practice of Constraint Programming—CP 2001, LNCS 2239, (pp. 77–92). Berlin Heidelberg New York: Springer.Google Scholar
  10. 10.
    Freuder, E. C. (1991). Eliminating interchangeable values in constraint satisfaction problems. In Proceedings AAAI’91, Vol. 1, (pp. 227–233).Google Scholar
  11. 11.
    The GAP Group. (2005). GAP—Groups, Algorithms, and Programming, Version 4.4. (http://www.gap-system.org).Google Scholar
  12. 12.
    Gent, I. P., Harvey, W., Kelsey, T., & Linton, S. (2003). Generic SBDD using computational group theory. In F. Rossi (Ed.), Principles and Practice of Constraint Programming—CP 2003, LNCS. Berlin Heidelberg New York: Springer.Google Scholar
  13. 13.
    Gent, I. P., & Smith, B. M. (2000). Symmetry breaking during search in constraint programming. In W. Horn (Ed.), Proceedings ECAI’2000, the European Conference on Artificial Intelligence (pp. 599–603).Google Scholar
  14. 14.
    Jégou, P. (1993). Decomposition of domains based on the micro-structure of finite constraint-satisfaction problems. In Proceedings AAAI’93 (pp. 731–736).Google Scholar
  15. 15.
    McKay, B. (1981). Practical graph isomorphism. Congressus Numerantium, 30, 45–87. (The software tool NAUTY is available for download from http://cs.anu.edu.au/~bdm/nauty/).Google Scholar
  16. 16.
    Meseguer, P., & Torras, C. (2001). Exploiting symmetries within constraint satisfaction search. Artificial Intelligence, 129, 133–163.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Petrie, K. E., & Smith, B. M. (2003). Symmetry breaking in graceful graphs. In F. Rossi (Ed.), Principles and Practice of Constraint Programming—CP 2003, LNCS 2833, (pp. 930–934). Berlin Heidelberg New York: Springer.Google Scholar
  18. 18.
    Puget, J.-F. (1993). On the satisfiability of symmetrical constrained satisfaction problems. In J. Komorowski & Z. W. Ras (Eds.), Methodologies for Intelligent Systems (Proceedings of ISMIS’93), LNAI 689, (pp. 350–361). Berlin Heidelberg New York: Springer.Google Scholar
  19. 19.
    Puget, J.-F. (2005). Automatic detection of variable and value symmetries. In P. van Beek (Ed.), Principles and Practice of Constraint Programming—CP 2005, LNCS 3709, (pp. 475–489). Berlin Heidelberg New York: Springer.Google Scholar
  20. 20.
    Ramani, A., & Markov, I. L. (2005). Automatically exploiting symmetries in constraint programming. In B. Faltings, A. Petcu, F. Fages & F. Rossi (Eds.), Recent Advances in Constraints, Joint ERCIM/CoLogNet International Workshop on Constraint Solving and Constraint Logic Programming, CSCLP 2004, LNCS 3419, (pp. 98–112). Berlin Heidelberg New York: Springer.Google Scholar
  21. 21.
    Roy, P., & Pachet, F. (1998). Using symmetry of global constraints to speed up the resolution of constraint satisfaction problems. In Workshop on Non Binary Constraints, ECAI-98.Google Scholar
  22. 22.
    Walsh, T. (2000). SAT v CSP. In Proceedings CP’2000 (pp. 441–456).Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • David Cohen
    • 1
  • Peter Jeavons
    • 2
  • Christopher Jefferson
    • 3
  • Karen E. Petrie
    • 3
  • Barbara M. Smith
    • 4
  1. 1.Department of Computer Science, Royal HollowayUniversity of LondonLondonUK
  2. 2.Computing LaboratoryUniversity of OxfordOxfordUK
  3. 3.School of Computer ScienceUniversity of St AndrewsScotlandUK
  4. 4.Cork Constraint Computation CentreUniversity College CorkCorkIreland

Personalised recommendations