Advertisement

Constraints

, Volume 10, Issue 3, pp 253–281 | Cite as

Constraint Solving in Uncertain and Dynamic Environments: A Survey

  • Gérard Verfaillie
  • Narendra Jussien
Article

Abstract

This article follows a tutorial, given by the authors on dynamic constraint solving at CP 2003 (Ninth International Conference on Principles and Practice of Constraint Programming) in Kinsale, Ireland (Verfaillie, G., & Jussien, N. (2003). It aims at offering an overview of the main approaches and techniques that have been proposed in the domain of constraint satisfaction to deal with uncertain and dynamic environments.

Keywords

constraint satisfaction problem uncertainty change stability robustness flexibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alami, R., Chatila, R., Fleury, S., Ghallab, M., & Ingrand, F. (1998). An architecture for autonomy. Int. J. Rob. Res. 17(4): 315–337.Google Scholar
  2. 2.
    Amilhastre, J., Fargier, H., & Marquis, P. (2002). Consistency restoration and explanations in dynamic CSP: Application to configuration. Artif. Intell. 135(1): 199–234.CrossRefGoogle Scholar
  3. 3.
    Bellicha, A. (1993). Maintenance of solution in a dynamic constraint satisfaction problem. In Proc. of Applications of Artificial Intelligence in Engineering VIII, Toulouse, France, pages 261–274.Google Scholar
  4. 4.
    Berlandier, P., & Neveu, B. (1994). Maintaining arc consistency through constraint retraction. In Proc. of the 6th IEEE International Conference on Tools with Artificial Intelligence (ICTAI-94), New Orleans, LA, USA.Google Scholar
  5. 5.
    Bessière, C. (1991). Arc-consistency in dynamic constraint satisfaction problems. In Proc. of the 9th National Conference on Artificial Intelligence (AAAI-91), Anaheim, CA, USA, pages 221–226.Google Scholar
  6. 6.
    Bessière, C. (1992). Arc-consistency for non-binary dynamic CSPs’. In Proc. of the 10th European Conference on Artificial Intelligence (ECAI-92), Vienna, Austria, pages 23–27.Google Scholar
  7. 7.
    Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., & Fargier, H. (1999). Semiring-based CSPs and valued CSPs: Frameworks, properties and comparison. Constraints 4(3): 199–240.CrossRefGoogle Scholar
  8. 8.
    Bordeaux, L., & Montfroy, E. (2002). Beyond NP: Arc-consistency for quantified constraints. In Proceedings of the 8th International Conference on Principles and Practice of Constraint Programming (CP-02), Ithaca, New York, USA.Google Scholar
  9. 9.
    Borning, A., & Freeman-Benson, B. (1998). Ultraviolet: A constraint satisfaction algorithm for interactive graphics. Constraints 3(1): 9–32.CrossRefGoogle Scholar
  10. 10.
    Boutilier, C., Dearden, R., & Goldszmidt, M. (2000). Stochastic dynamic programming with factored representations. Artif. Intell. 121(1–2): 49–107.CrossRefGoogle Scholar
  11. 11.
    Bowen, J., & Bahler, G. (1991). Conditional existence of variables in generalized constraint networks. In Proc. of the 9th National Conference on Artificial Intelligence (AAAI-91), Anaheim, CA, USA.Google Scholar
  12. 12.
    Branke, J., & Mattfeld, D. (2002). Anticipatory scheduling for dynamic job shop problems. In Proc. of the AIPS-02 Workshop on “Online Planning and Scheduling”, Toulouse, France.Google Scholar
  13. 13.
    Bryant, R. (1986). Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. C-35(8): 677–691.Google Scholar
  14. 14.
    Chien, S., Knight, R., Stechert, A., Sherwood, R., & Rabideau, G. (2000). Using iterative repair to improve the responsiveness of planning and scheduling. In Proc. of the 5th International Conference on Artificial Intelligence Planning and Scheduling (AIPS-00), Breckenridge, CO, USA.Google Scholar
  15. 15.
    Davenport, A., & Beck, C. (2000). A Survey of Techniques for Scheduling with Uncertainty. http://4c.ucc.ie/jcb/publications.html.
  16. 16.
    Davenport, A., Gefflot, C., & Beck, C. (2001). Slack-based techniques for robust schedules. In Proc. of the 6th European Conference on Planning (ECP-01), Toledo, Spain.Google Scholar
  17. 17.
    de Kleer, J. (1986). An assumption-based truth maintenance system. Artif. Intell. 28:127–162.CrossRefGoogle Scholar
  18. 18.
    Debruyne, R. (1995). Les algorithmes d’arc-consistance dans les CSP dynamiques. Rev. Intell. Artif. 9(3): 239–267.CrossRefGoogle Scholar
  19. 19.
    Debruyne, R. (1996). Arc-consistency in dynamic CSPs is no more prohibitive. In Proc. of the 8th IEEE International Conference on Tools with Artificial Intelligence (ICTAI-96) Toulouse, France, pages 239–267.Google Scholar
  20. 20.
    Debruyne, R., Ferrand, G., Jussien, N., Lesaint, W., Ouis, S., & Tessier, A. (2003). Correctness of constraint retraction algorithms. In Proc. of the 16th International Florida Artificial Intelligence Research Society Conference (FLAIRS-03), St. Augustine, FL, USA.Google Scholar
  21. 21.
    Dechter, R. (1992). Constraint networks. In Shapiro, S., ed., Encyclopedia of Artificial Intelligence, John Wiley & Sons, New York, NY, USA, pages 276–285Google Scholar
  22. 22.
    Dechter, R., & Dechter, A. (1988). Belief maintenance in dynamic constraint networks. In Proc. of the 7th National Conference on Artificial Intelligence (AAAI-88), St. Paul, MN, USA, pages 37–42.Google Scholar
  23. 23.
    Dechter, R., & Larkin D. (2001). Hybrid processing of beliefs and constraints. In Proc. of the 17th International Conference on Uncertainty in Artificial Intelligence (UAI-01), Seattle, WA, USA, pages 112–119.Google Scholar
  24. 24.
    Dechter, R., Meiry, I., & Pearl, J. (1991). Temporal constraint networks. Artif. Intell. 49: 61–95.CrossRefMathSciNetGoogle Scholar
  25. 25.
    Deransart, P., Hermenegildo, M., & Malluszynski, J. eds. (2000). Analysis and Visualisation Tools for Constraint Programming (LNCS 1870), Springer Verlag.Google Scholar
  26. 26.
    Doyle, J. (1979). A truth maintenance system. Artif. Intell. 12: 231–272.CrossRefGoogle Scholar
  27. 27.
    Drummond, M., Bresina, J., & Swanson, K. (1994). Just-in-case scheduling. In Proc. of the 12th National Conference on Artificial Intelligence (AAAI-94), Seattle, WA, USA, pages 1098–1104.Google Scholar
  28. 28.
    Elkyari, A., Guéret, C., & Jussien, N. (2004). Stable solutions for dynamic project scheduling problems. In Proc. of the International Workshop on Project Management and Scheduling (PMS-04), Nancy, France, pages 380–384.Google Scholar
  29. 29.
    Fages, F., Fowler, J., & Sola, T. (1998). Experiments in reactive constraint logic programming. J. Log. Program. 37(1-3): 185–212.CrossRefGoogle Scholar
  30. 30.
    Faltings, B., & Macho-Gonzalez, S. (2005). Open constraint programming. Artif. Intell. 161(1-2): 181–208.CrossRefMathSciNetGoogle Scholar
  31. 31.
    Fargier, H., & Lang, J. (1993). Uncertainty in constraint satisfaction problems: A probabilistic approach. In Proc. of the European Conference on Symbolic and Quantitavive Approaches of Reasoning under Uncertainty (ECSQARU-93), Grenade, Spain, pages 97–104.Google Scholar
  32. 32.
    Fargier, H., Lang, J., & Schiex, T. (1996). Mixed constraint satisfaction: A framework for decision problems under incomplete knowledge. In Proc. of the 13th National Conference on Artificial Intelligence (AAAI-96), Portland, OR, USA, pages 175–180.Google Scholar
  33. 33.
    Fowler, D., & Brown, K. (2000). Branching constraint satisfaction problems for solutions robust under likely changes. In Proc. of the 6th International Conference on Principles and Practice of Constraint Programming (CP-00), Singapore.Google Scholar
  34. 34.
    Fowler, D., & Brown, K. (2003). Branching constraint satisfaction problems and Markov decision problems compared. Ann. Oper. Res. 118(1-4): 85–100.CrossRefGoogle Scholar
  35. 35.
    Freeman-Benson, B., Maloney, J., & Borning, A. (1990). An incremental constraint solver. Commun. ACM 33(1): 54–63.CrossRefGoogle Scholar
  36. 36.
    Freuder, E. (1991). Eliminating interchangeable values in constraint satisfaction problems. In Proc. of the 9th National Conference on Artificial Intelligence (AAAI-91), Anaheim, CA, USA, pages 227–233.Google Scholar
  37. 37.
    Gelle, E., & Faltings, B. (2003). Solving mixed and conditional constraint satisfaction problems. Constraints 8(2): 107–141.CrossRefGoogle Scholar
  38. 38.
    Georget, Y., Codognet, P., & Rossi, F. (1999). Constraint retraction in CLP(FD): Formal framework and performance results. Constraints 4(1): 5–42.CrossRefGoogle Scholar
  39. 39.
    Ginsberg, M. (1993). Dynamic backtracking. J. Artif. Intell. Res. 1: 25–46.Google Scholar
  40. 40.
    Ginsberg, M., Parkes, A., & Roy, A. (1998). Supermodels and robustness. In Proc. of the 15th National Conference on Artificial Intelligence (AAAI-98), Madison, WI, USA, pages 334–339.Google Scholar
  41. 41.
    Harvey, W., & Ginsberg, M. (1995). Limited discrepancy search. In Proc. of the 14th International Joint Conference on Artificial Intelligence (IJCAI-95), Montréal, Canada, pages 607–613.Google Scholar
  42. 42.
    Hebrard, E., Hnich, B., & Walsh, T. (2004). Super solutions in constraint programming. In Proc. of the International Conference on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming for Combinatorial Optimisation Problems (CP-AI-OR-04), NICE, France, pages 157–172.Google Scholar
  43. 43.
    Hentenryck, P. V., & Provost, T. L. (1991). Incremental search in constraint logic programming. New Gener. Comput. 9: 257–275.Google Scholar
  44. 44.
    Jégou, P. (1994). A logical approach to solve dynamic CSPs: Preliminary report. In Proc. of the ECAI94 Workshop on “Constraint Satisfaction Issues Raised by Practical Applications”, Amsterdam, The Netherlands.Google Scholar
  45. 45.
    Jussien, N., & Barichard, V. (2000). The PaLM system: Explanation-based constraint programming. In Proc. of the CP-00 TRICS Workshop on “Techniques for Implementing Constraint Programming Systems,”, Singapore, pages 118–133.Google Scholar
  46. 46.
    Jussien, N., & Lhomme, O. (2002). Local search with constraint propagation and conflict-based heuristics. Artif. Intell. 139: 21–45.CrossRefMathSciNetGoogle Scholar
  47. 47.
    Jussien, N., Debruyne, R., & Boizumault, P. (2000). Maintaining arc-consistency within dynamic backtracking. In Proc. of the 6th International Conference on Principles and Practice of Constraint Programming (CP-00), Singapore, pages 249–261.Google Scholar
  48. 48.
    Kramer, L., & S. Smith, (2003). Maximizing flexibility: A retraction heuristic for oversubscribed scheduling problems. In Proc. of the 18th International Joint Conference on Artificial Intelligence (IJCAI-03), Acapulco, Mexico.Google Scholar
  49. 49.
    Lamma, E., Mello, P., Milano, M., Cucchiara, R., Gavanelli, M., & Piccardi, M. (1999). Constraint propagation and value acquisition: Why we should do it Interactively. In Proc. of the 16th International Joint Conference on Artificial Intelligence (IJCAI-99), Stockholm, Sweden.Google Scholar
  50. 50.
    Lesaint, D. (1993). Specific solution sets for constraint satisfaction problems. In Proc. of the 13th International Conference on Artificial Intelligence, Expert Systems and Natural Language (Avignon-93), Avignon, France.Google Scholar
  51. 51.
    Littman, M., Majercik, S., & Pitassi, T. (2001). Stochastic boolean satisfiability. J. Autom. Reason. 27(3): 251–296.CrossRefGoogle Scholar
  52. 52.
    Lottaz, C., Clément, D., Faltings, B., & Smith, I. (1999). Constraint-based support for collaboration in design and construction. J. Comput. Civ. Eng. 13(1): 23–35.CrossRefGoogle Scholar
  53. 53.
    Mackworth, A. (1992). Constraint satisfaction. In Shapiro, S., ed., Encyclopedia of Artificial Intelligence, John Wiley & Sons, New York, NY, USA, pages 285–293.Google Scholar
  54. 54.
    Manandhar, S., Tarim, A., & Walsh, T. (2003). Scenario-based stochastic constraint programming. In Proc. of the 18th International Joint Conference on Artificial Intelligence (IJCAI-03), Acapulco, Mexico.Google Scholar
  55. 55.
    Miguel, I., & Shen, Q. (2003). Fuzzy rrDFCSP and planning. Artif. Intell. 148(1-2): 11–52.CrossRefMathSciNetGoogle Scholar
  56. 56.
    Minton, S., Johnston, M., Philips, A., & Laird, P. (1992). Minimizing conflicts: A heuristic repair method for constraint satisfaction and scheduling problems. Artif. Intell. 58: 160–205.CrossRefGoogle Scholar
  57. 57.
    Mittal, S., & Falkenhainer, B. (1990). Dynamic constraint satisfaction problems. In Proc. of the 8th National Conference on Artificial Intelligence (AAAI-90), Boston, MA, USA, pages 25–32.Google Scholar
  58. 58.
    Montanari, U., & Rossi, F. (1997). Constraint solving and programming: What next? Constraints 2(1): 87–91.CrossRefGoogle Scholar
  59. 59.
    Morris, P., & Muscettola, N. (2000). Execution of temporal plans with uncertainty. In Proc. of the 17th National Conference on Artificial Intelligence (AAAI-00), Austin, TX, USA, pages 491–496.Google Scholar
  60. 60.
    Morris, P., Muscettola, N., & Vidal, T. (2001). Dynamic control of plans with temporal uncertainty. In Proc. of the 17th International Joint Conference on Artificial Intelligence (IJCAI-01), Seattle, WA, USA, pages 494–499.Google Scholar
  61. 61.
    Muscettola, N., Morris, P., & Tsamardinos, I. (1998). Reformulating temporal plans for efficient execution. In Proc. of the 6th International Conference on the Principles of Knowledge Representation and Reasoning (KR-98), Trento, Italy, pages 444–452.Google Scholar
  62. 62.
    Muscettola, N., Nayak, P., Pell, B., & Williams, B. (1998). Remote agent: To boldly go where no AI system has gone Before. Artif. Intell. 103(1-2): 5–48.CrossRefGoogle Scholar
  63. 63.
    Neapolitan, R. (1990). Probabilistic Reasoning in Expert Systems, John Wiley & Sons, New York, NY, USA.Google Scholar
  64. 64.
    O’Sullivan, B. (2002). Interactive constraint-aided conceptual design. Artif. Intell. Eng. Des. Anal. Manuf. Journal (AIEDAM) 16(4).Google Scholar
  65. 65.
    Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco, CA, USA.Google Scholar
  66. 66.
    Pralet, C., Verfailllie, G., & Schiex, T. (2004). Belief and desire networks for answering complex queries. In Proc. of the CP-04 Workshop on “Constraint Solving under Change and Uncertainty,”, Toronto, Canada.Google Scholar
  67. 67.
    Prosser, P. (1989). A reactive scheduling agent. In Proc. of the 11th International Joint Conference on Artificial Intelligence (IJCAI-89), Detroit, MI, USA, pages 1004–1009.Google Scholar
  68. 68.
    Prosser, P., Conway, C., & Muller, C. (1992). A distributed constraint maintenance system. In Proc. of the 12th International Conference on Artificial Intelligence, Expert Systems and Natural Language (Avignon-92), Avignon, France, pages 221–231.Google Scholar
  69. 69.
    Puterman, M. (1994). Markov Decision Processes, Discrete Stochastic Dynamic Programming, John Wiley & Sons, New York, NY, USA.Google Scholar
  70. 70.
    Ran, Y., Roos, N., & van den Herik J. (2002). Approaches to find a near-minimal change solution for dynamic CSPs’. In Proc. of the 4th International Workshop on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming for Combinatorial Optimization Problems (CP-AI-OR-02), Le Croisic, France.Google Scholar
  71. 71.
    Sabin, D., & Freuder, E. (1996). Configuration as composite constraint satisfaction. In Working Notes of the AAAI96 Fall Symposium on Configuration.Google Scholar
  72. 72.
    Sabin, D., & Freuder, E. (1998). Detecting and resolving inconsistency and redundancy in conditional constraint satisfaction problems. In Proc. of the CP-98 Workshop on “Constraint Problem Reformulation,” Pisa, Italia.Google Scholar
  73. 73.
    Sabin, D., & Freuder, E. (1999). Detecting and resolving inconsistency in conditional constraint satisfaction problems. In Proc. of the AAAI-99 Workshop on “Configuration,” Orlando, FL, USA, pages 95–100.Google Scholar
  74. 74.
    Sabin, M., Freuder, E., & Wallace, R. (2003). Greater efficiency for conditional constraint satisfaction. In Proc. of the 9th International Conference on Principles and Practice of Constraint Programming (CP-03), Cork, Ireland, pages 649–663.Google Scholar
  75. 75.
    Sakkout, H. E., & Wallace, M. (2000). Probe backtrack search for minimal perturbation in dynamic scheduling. Constraints 5(4): 359–388.CrossRefGoogle Scholar
  76. 76.
    Sannella, M., Maloney, J., Freeman-Benson, B., & Borning, A. (1993). Multi-way versus one-way constraints in user interfaces: Experience with the deltablue algorithm. Softw. Pract. Exp. 23(5): 529–566.Google Scholar
  77. 77.
    Schiex, T., & Verfaillie, G. (1993). Nogood recording for static and dynamic CSP. In Proc. of the 5th IEEE International Conference on Tools with Artificial Intelligence (ICTAI-93), Boston, MA, USA, pages 48–55.Google Scholar
  78. 78.
    Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued constraint satisfaction problems: Hard and easy problems. In Proc. of the 14th International Joint Conference on Artificial Intelligence (IJCAI-95), Montréal, Canada, pages 631–637.Google Scholar
  79. 79.
    Smith, S. (1995). Reactive scheduling systems. In Brown, D., & Sherer, W., eds., Intelligent Scheduling Systems. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  80. 80.
    Soininen, T., Gelle, E., & Niemela, I. (1999). A fixpoint definition of dynamic constraint satisfaction. In Proc. of the 5th International Conference on Principles and Practice of Constraint Programming (CP-99), Alexandria, VA, USA, pages 419–433.Google Scholar
  81. 81.
    Trombettoni, G. (1998). A polynomial time local propagation algorithm for general dataflow constraint problems. In Proc. of the 4th International Conference on Principles and Practice of Constraint Programming (CP-98), Pisa, Italia, pages 432–446.Google Scholar
  82. 82.
    van Beek, P., & Chen, X. (1999). CPlan: A constraint programming approach to planning. In Proc. of the 16th National Conference on Artificial Intelligence (AAAI-99), Orlando, FL, USA, pages 585–590.Google Scholar
  83. 83.
    Vempaty, N. (1992). Solving constraint satisfaction problems using finite state automata. In Proc. of the 10th National Conference on Artificial Intelligence (AAAI-92), San Jose, CA, USA, pages 453–458.Google Scholar
  84. 84.
    Verfaillie, G., & Schiex, T. (1994). Dynamic backtracking for dynamic constraint satisfaction problems. In Proc. of the ECAI-94 Workshop on “Constraint Satisfaction Issues Raised by Practical Applications,” Amsterdam, The Netherlands.Google Scholar
  85. 85.
    Verfaillie, G., & Schiex, T. (1994). Solution reuse in dynamic constraint satisfaction problems. In Proc. of the 12th National Conference on Artificial Intelligence (AAAI-94), Seattle, WA, USA, pages 307–312.Google Scholar
  86. 86.
    Verfaillie, G., & Schiex, T. (1995). Maintien de solution dans les problèmes dynamiques de satisfaction de contraintes: Bilan de quelques approches. Rev. Intell. Artif. 9(3): 269–309.Google Scholar
  87. 87.
    Verfaillie, G., & Jussien, N. (2003). Dynamic Constraint Solving: Handling Change and Uncertainty in Constraint Satisfaction. http://www.emn.fr/jussien/CP03tutorial: Slides of the tutorial given at CP-03 (9th International Conference on Principles and Practice of Constraint Programming, Kinsale, Ireland) with a commented bibliography.
  88. 88.
    Vidal, T., & Fargier, H. (1999). Handling contingency in temporal constraint networks: From consistency to controllabilities. J. Exp. Theor. Artif. Intell. 11(1): 23–45.CrossRefGoogle Scholar
  89. 89.
    Wallace, R., & Freuder, E. (1998). Stable solutions for dynamic constraint satisfaction problems. In Proc. of the 4th International Conference on Principles and Practice of Constraint Programming (CP-98), Pisa, Italia, pages 447–461.Google Scholar
  90. 90.
    Wallace, R., & Freuder, E. (2005). Supporting dispatchability in schedules with consumable ressources. J. Sched. 8: 7–23.CrossRefMathSciNetGoogle Scholar
  91. 91.
    Walsh, T. (2002). Stochastic constraint programming. In Proc. of the 15th European Conference on Artificial Intelligence (ECAI-02), Lyon, France.Google Scholar
  92. 92.
    Yokoo, M., Durfee, E., Ishida, T., & Kuwabara, K. (1998). The distributed constraint satisfaction problem: Formalization and algorithms. IEEE Trans. Knowl. Data Eng. 10(5): 673–685.CrossRefGoogle Scholar
  93. 93.
    Zweden, M., Daun, B., Davis, E., & Deale, M. (1994). Scheduling and rescheduling with iterative repair. In Zweden M., Fox, M., eds., Intelligent Scheduling, Morgan Kaufmann, San Francisco, CA, USA, pages 241–256.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS–CNRS)ToulouseFrance
  2. 2.École des Mines de Nantes (EMN)NantesFrance

Personalised recommendations