Advertisement

Chemistry of Natural Compounds

, Volume 54, Issue 2, pp 402–404 | Cite as

Alkaloids and Butyrolactones from a Marine-Derived Microsphaeropsis sp. Fungus

  • Yun-Feng Liu
  • Si-Yuan Cai
  • Xiao-Meng Hao
  • Fei Cao
  • Hua-Jie Zhu
Article

Marine fungi have been proved to be a rich source of bioactive secondary metabolites, which has attracted increasing attention from those seeking new pharmaceutically useful natural products in recent years [1]. The marine-derived Microsphaeropsis fungi have been known to produce various compounds with novel structures and interesting biological activities such as the anti-protein kinase 10-hydroxy-18-methoxybetaenone [2] and the antifungal (R)-mellein [3]. During our ongoing search for bioactive metabolites from marine fungi [4, 5, 6], a marine sediment-derived fungus collected from the Bohai Sea, Microsphaeropsis sp. CF09-11, attracted our attention because an EtOAc extract of the fungal culture exhibited antibacterial activity. Bioassay-guided fractionation of the active extract led to the isolation of three alkaloids (1–3) and three butyrolactones (46). Herein, we report the isolation, structural characterization, and biological activities of these compounds.

On the basis of...

Notes

Acknowledgment

This work was supported by the Natural Sience Foundation of Hebei Province of China (No. B2017201059), the National Natural Science Foundation of China (No. 41606174), and the financial support from Hebei University for “Talent Researcher Program”.

References

  1. 1.
    J. W. Blunt, B. R. Copp, R. A. Keyzers, M. H. Munro, and M. R. Prinsep, Nat. Prod. Rep., 32, 116 (2015).CrossRefPubMedGoogle Scholar
  2. 2.
    G. Brauers, R. A. Edrada, R. Ebel, P. Proksch, V. Wray, A. Berg, U. Grafe, C. Schachtele, F. Totzke, G. Finkenzeller, D. Marme, J. Kraus, M. Munchbach, M. Michel, G. Bringmann, and K. Schaumann, J. Nat. Prod., 63, 739 (2000).CrossRefPubMedGoogle Scholar
  3. 3.
    U. Hoeller, G. M. Koenig, and A. D. Wright, J. Nat. Prod., 62, 114 (1999).CrossRefGoogle Scholar
  4. 4.
    F. Cao, Q. Yang, C. L. Shao, C. J. Kong, J. J. Zheng, Y. F. Liu, and C. Y. Wang, Mar. Drugs, 13, 4171 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    H. Yu, W. X. Li, J. C. Wang, Q. Yang, H. J. Wang, C. C. Zhang, S. S. Ding, and H. J. Zhu, Tetrahedron, 71, 3491 (2015).CrossRefGoogle Scholar
  6. 6.
    P. He, S. S. Tian, Y. Xu, H. Yu, Y. N. Ji, H. J. Zhu, and J. H. Li, Helv. Chim. Acta, 98, 819 (2015).CrossRefGoogle Scholar
  7. 7.
    Y. Zhou, A. Debbab, A. Mandi, V. Wray, B. Schulz, W. E. G. Muller, M. Kassack, W. H. Lin, T. Kurtan, P. Proksch, and A. H. Aly, Eur. J. Org. Chem., 2013, 894 (2013).CrossRefGoogle Scholar
  8. 8.
    H. Kato, T. Yoshida, T. Tokue, Y. Nojiri, H. Hirota, T. Ohta, R. M. Williams, and S. Tsukamoto, Angew. Chem. Int. Ed., 46, 2254 (2007).CrossRefGoogle Scholar
  9. 9.
    M. E. Cazar, G. Schmeda-Hirschmann, and L. Astudillo, World J. Microbiol. Biotechnol., 21, 1067 (2005).CrossRefGoogle Scholar
  10. 10.
    P. Nuclear, D. Sommit, N. Boonyuen, and K. Pudhom, Chem. Pharm. Bull., 58, 1221 (2010).CrossRefPubMedGoogle Scholar
  11. 11.
    G. Appendino, S. Gibbons, A. Giana, A. Pagani, G. Grassi, M. Stavri, E. Smith, and M. M. Rahman, J. Nat. Prod., 71, 1427 (2008).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical SciencesHebei UniversityBaodingP. R. China

Personalised recommendations