Advertisement

Chemistry of Natural Compounds

, Volume 54, Issue 2, pp 370–372 | Cite as

Oxidation of 4-Isopropylphenol in Aqueous Solutions as a Model for Oxidation of Flavonoids to Form Dimers

  • I. G. Zenkevich
  • T. I. Pushkareva
Article
  • 31 Downloads

One of the main chemical properties of natural flavonoids is their ability for facile oxidation in aqueous solutions, including by dissolved atmospheric oxygen, which explains their high antioxidant activity [1, 2, 3]. Formation of dimers, trimers, and more complicated oligomers of often undetermined structures is the most interesting feature of the flavonoid oxidation-product composition even at low concentrations in aqueous solutions. The formation mechanisms are still the subjects of discussion [4, 5, 6, 7, 8].

The goal of the present work was to model flavonoid oxidation using a simpler compound (4-isopropylphenol) as an example. This would allow the formation of their dimeric oxidation products to be explained.

One conversion pathway for free-radical intermediates from flavonoid oxidation is the formation of quinone and quinone methide intermediates. Quinone methides are described most extensively in lignin chemistry [9]. Their most characteristic chemical property, like quinones...

Notes

Acknowledgment

We thank the management of FGUP NII GPECh FMBA of Russia (St. Petersburg) for the opportunity to use the equipment required for the present work.

References

  1. 1.
    T. J. Mabry, K. R. Markham, and M. B. Thomas, The Systematic Identification of Flavonoids, Springer–Verlag, New York, 1970, 354 pp.Google Scholar
  2. 2.
    I. G. Zenkevich, A. Yu. Eschenko, S. V. Makarova, A. G. Vitenberg, Yu. G. Dobryakov, and V. A. Utsal, Molecules, 12 (3), 654 (2007).CrossRefPubMedGoogle Scholar
  3. 3.
    I. G. Zenkevich and T. I. Pushkareva, Zh. Anal. Khim., 72 (10), 890 (2017).Google Scholar
  4. 4.
    E. M. Cherviakovsky, D. A. Bolibrukh, A. V. Baranovsky, T. M. Vlasova, V. P. Kurchenko, A. A. Gilep, and S. A. Usanov, Biochem. Biophys. Res. Commun., 342, 459 (2006).CrossRefPubMedGoogle Scholar
  5. 5.
    S. Chidouche, N.-E. Es-Safi, and P.-H. Ducrot, Tetrahedron Lett., 49, 619 (2008).CrossRefGoogle Scholar
  6. 6.
    R. Gazak, P. Sedmera, M. Marzorati, S. Riva, and V. Kren, J. Mol. Catal. B: Enzym., 50, 87 (2008).CrossRefGoogle Scholar
  7. 7.
    A. Zhou and O. A. Sadik, J. Agric. Food Chem., 56, 12081 (2008).CrossRefPubMedGoogle Scholar
  8. 8.
    A. Pham, A. Bortolazzo, and J. B. White, Biochem. Biophys. Res. Commun., 427, 415 (2012).CrossRefPubMedGoogle Scholar
  9. 9.
    S. M. Shevchenko and A. G. Apushkinskii, Russ. Chem. Rev., 61 (1), 105 (1992).CrossRefGoogle Scholar
  10. 10.
    A. R. Katritzky, D. Fedoseyenko, P. P. Mohapatra, and P. J. Steel, Synthesis, 5, 777 (2008).CrossRefGoogle Scholar
  11. 11.
    R. Gulaborski, I. Bogeski, V. Mirceski, S. Saul, B. Pasieka, H. H. Haeri, M. Stefova, J. P. Stanoeva, S. Mitrev, M. Hoth, and R. Kappl, Sci. Rep., 3, Art. No. 1865 (2013).Google Scholar
  12. 12.
    M. Freccero, Mini-Rev. Org. Chem., 1 (4), 403 (2004).CrossRefGoogle Scholar
  13. 13.
    W. Lohmann, A. Baumann, and U. Karst, LC·GC Eur., No. 1, 7 (2010).Google Scholar
  14. 14.
    H. Faber, M. Vogel, and U. Karst, Anal. Chim. Acta, 834, 9 (2014).CrossRefPubMedGoogle Scholar
  15. 15.
    H. Oberadeer, F. Pitterl, R. Erb, and S. Plattner, Mass Spectrom. Rev., 34 (1), 64 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Chemistry, St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations