Advertisement

Chemistry of Natural Compounds

, Volume 54, Issue 2, pp 281–285 | Cite as

New S-Monoterpenylcysteines

  • A. K. Melekhin
  • D. V. Sudarikov
  • O. G. Shevchenko
  • S. A. Rubtsova
  • A. V. Kuchin
Article
  • 38 Downloads

New sulfides based on 4-caranethiol, 3-hydroxyisocaranethiol, neomenthanethiol, 10-thioisoborneol, 10-hydroxyisocamphenylthiol, and 10-thioisocampheol containing L-serine residues were synthesized for the first time in 40–70% yields. The synthesized compounds were not cytotoxic in a laboratory mouse erythrocyte hemolysis model and possessed statistically significant membrane-protective and antioxidant activity at a concentration of 50 μmol/L.

Keywords

S-monoterpenylcysteines 4-caranethiol 3-hydroxyisocaranethiol 10-hydroxyisocamphenylthiol neomenthanethiol L-serine L-3-chloroalanine sulfides antioxidant activity erythrocytes cytotoxicity 

Notes

Acknowledgment

The work was financially supported by the RFBR (Project 16-03-01064) and used equipment at the Khimiya Center for Collective Use (CCU) at the Institute of Chemistry, Komi SC, UB, RAS. Antioxidant and membrane-protective activities were studied at the Molecular Biology CCU at the Institute of Biology, Komi SC, UB, RAS. Animals from the scientific collection of experimental animals at the Institute of Biology, Komi SC, UB, RAS were used in the work (http://www.ckp-rf.ru/usu/471933/).

References

  1. 1.
    S. Nakagawa, K. Masamoto, H. Sumiyoshi, and H. Harada, J. Toxicol. Sci., 9, 57 (1984).CrossRefPubMedGoogle Scholar
  2. 2.
    T. Yamasaki, L. Li, and B. H. S. Lau, Phytother. Res., 8, 408 (1994).CrossRefGoogle Scholar
  3. 3.
    N. Ide and B. H. S. Lau, Drug Dev. Ind. Pharm., 25, 619 (1999).CrossRefPubMedGoogle Scholar
  4. 4.
    P. S. Ruddock, M. Liao, B. C. Foster, L. Lawson, J. T. Arnason, and J.-A. R. Dillon, Phytother. Res., 19, 327 (2005).CrossRefPubMedGoogle Scholar
  5. 5.
    G. Saravanan, P. Ponmurugan, and M. S. Begum, J. Trace Elem. Med. Biol., 27, 143 (2013).CrossRefPubMedGoogle Scholar
  6. 6.
    Z. Liu, M. Li, K. Chen, J. Yang, R. Chen, T. Wang, J. Liu, W. Yang, and Z. Ye, Mol. Med. Rep., 5, 439 (2011).PubMedGoogle Scholar
  7. 7.
    S. Nakagawa, S. Kasuga, and H. Matsuura, Phytother. Res., 3, 50 (1989).CrossRefGoogle Scholar
  8. 8.
    N. Nishiyama, T. Moriguchi, N. Morihara, and H. Saito, J. Nutr., 131, 1093S (2001).CrossRefPubMedGoogle Scholar
  9. 9.
    M. Iimuro, H. Shibata, T. Kawamori, T. Matsumoto, T. Arakawa, T. Sugimura, and K. Wakabayashi, Cancer Lett., 187, 61 (2002).CrossRefPubMedGoogle Scholar
  10. 10.
    T. Imai, Y. Kosuge, H. Saito, T. Uchiyama, T. Wada, S. Shimba, K. Ishige, S. Miyairi, M. Makishima, and Y. Ito, J. Pharmacol. Sci., 130, 185 (2016).CrossRefPubMedGoogle Scholar
  11. 11.
    J. S. Gordon, P. M. Wolanin, A. V. Gonzalez, D. A. Fela, G. Sarngadharan, K. Rouzard, E. Perez, J. B. Stock, and M. B. Stock, J. Invest. Dermatol., 128, 643 (2008).CrossRefPubMedGoogle Scholar
  12. 12.
    R. I. Duclos, Jr., D. Lu, J. Guo, and A. Makriyannis, Tetrahedron Lett., 49, 5587 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    A. D. Brown, M. E. Bunnage, P. A. Glossop, K. James, R. Jones, C. A. L. Lane, R. A. Lewthwaite, S. Mantell, C. Perros-Huguet, D. A. Price, M. Trevethick, and R. Webster, Bioorg. Med. Chem. Lett., 18, 1280 (2008).CrossRefPubMedGoogle Scholar
  14. 14.
    C. Cerny and R. Guntz-Dubini, Food Chem., 141, 1078 (2013).CrossRefPubMedGoogle Scholar
  15. 15.
    M. Miki, H. Tamai, M. Mino, Y. Yamamoto, and E. Niki, Arch. Biochem. Biophys., 258, 373 (1987).CrossRefPubMedGoogle Scholar
  16. 16.
    A. Banach, J. Scianowski, and P. Ozimek, Phosphorus Sulfur Silicon Relat. Elem., 189, 274 (2014).CrossRefGoogle Scholar
  17. 17.
    O. A. Banina, D. V. Sudarikov, P. A. Slepukhin, L. L. Frolova, and A. V. Kuchin, Chem. Nat. Compd., 52, 240 (2016).CrossRefGoogle Scholar
  18. 18.
    E. S. Izmest’ev, D. V. Sudarikov, S. A. Rubtsova, P. A. Slepukhin, and A. V. Kuchin, Russ. J. Org. Chem., 48, 184 (2012).CrossRefGoogle Scholar
  19. 19.
    O. D. Lucchi, V. Lucchini, C. Marchioro, G. Valle, and G. Modena, J. Org. Chem., 51, 1457 (1986).CrossRefGoogle Scholar
  20. 20.
    O. A. Banina, D. V. Sudarikov, Y. V. Krymskaya, L. L. Frolova, and A. V. Kuchin, Chem. Nat. Compd., 51, 261 (2015).CrossRefGoogle Scholar
  21. 21.
    F. Martinez-Ramos, M. E. Vargas-Diaz, L. Chacon-Garcia, J. Tamariz, P. Joseph-Nathan, and L. G. Zepeda, Tetrahedron: Asymmetry, 12, 3095 (2001).CrossRefGoogle Scholar
  22. 22.
    J. Takebayashi, J. Chen, and A. Tai, Advanced Protocols in Oxidative Stress II, Methods in Molecular Biology, Humana Press, London, 2010, pp. 287–296.CrossRefGoogle Scholar
  23. 23.
    T. Asakawa and S. Matsushita, Lipids, 15, 137 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. K. Melekhin
    • 1
  • D. V. Sudarikov
    • 1
  • O. G. Shevchenko
    • 2
  • S. A. Rubtsova
    • 1
  • A. V. Kuchin
    • 1
  1. 1.Institute of Chemistry, Komi Scientific Center, Ural BranchRussian Academy of SciencesSyktyvkarRussia
  2. 2.Institute of Biology, Komi Scientific Center, Ural BranchRussian Academy of SciencesSyktyvkarRussia

Personalised recommendations