Chemistry of Natural Compounds

, Volume 54, Issue 2, pp 274–277 | Cite as

Secondary Metabolites from the Fungus Quambalaria cyanescens

  • Daoud W. Bishay
  • Afaf M. Abdel-Baky
  • Ahmed M. Moharram
  • Lourin G. Malak
  • Radhakrishnan Srivedavyasasri
  • Samir A. Ross
Article
  • 2 Downloads

A phytochemical study of the fungus Quambalaria cyanescens led to the isolation of one new natural compound (1), along with four known compounds (2–5). The structures of the isolated metabolites were elucidated based on spectroscopic and spectrometric techniques. The fatty acid composition of Q. cyanescens was determined by GC/MS and found to consist of stearic, myristic, lauric, linoleic, cis-vaccenic, oleic, and pentadecanoic acids. All the isolated compounds were evaluated for their antimicrobial, antimalarial, and antileishmanial activities.

Keywords

Quambalaria cyanescens 3-butylphenol fatty acids 

Notes

Acknowledgment

We are grateful to the Egyptian Government and the National Center for Natural Products Research, University of Mississippi, USA for financial support, and to Drs. Melissa Jacob, Babu Tekwani, and Shabana Khan for performing the bioassays.

References

  1. 1.
    P. F. Cannon and P. M. Kirk, Fungal Families of the World, Wallingford, Oxfordshire, UK, 2007.Google Scholar
  2. 2.
    Z. W. de Beer, D. Begerow, R. Bauer, G. S. Pegg, P. W. Crous, and M. J. Wingfield, Stud. Mycol., 55, 289 (2006).CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    D. Begerow, R. Bauer, and F. Oberwinkler, Mycol. Res., 105, 798 (2001).CrossRefGoogle Scholar
  4. 4.
    J. Simpson, Aust. Mycol., 19, 57 (2000).Google Scholar
  5. 5.
    J. H. P. Tyman and S. K. Mehet, Chem. Phys. Lipids, 126, 177 (2003).CrossRefPubMedGoogle Scholar
  6. 6.
    F. Hai-long, T. Hong-wei, Li. H. Hui-ming, and P. Yue-hu, Chin. J. Mar. Drugs, 24, 9 (2005).Google Scholar
  7. 7.
    M. Adamczeski, A. Reed, and P. Crews, J. Nat. Prod., 58, 201 (1995).CrossRefPubMedGoogle Scholar
  8. 8.
    S. Manda, S. I. Khan, S. K. Jain, S. Mohammed, B. L. Tekwani, I. A. Khan, R. A. Vishwakarma, and S. B. Baharate, Bioorg. Med. Chem. Lett., 24, 3247 (2014).CrossRefPubMedGoogle Scholar
  9. 9.
    S. Jain, R. Sahu, L. A. Walker, and B. L. Tekwani, J. Vis. Exp., 70, e4045 (2012).Google Scholar
  10. 10.
    S. B. Bharate, S. I. Khan, N. A. M. Yunus, S. K. Chauthe, M. R. Jacob, B. L. Tekwani, I. A. Khan, and I. P. Singh, Bioorg. Med. Chem. Lett., 15, 87 (2007).CrossRefGoogle Scholar
  11. 11.
    M. M. Radwan, S. P. Manly, and S. A. Ross, Nat. Prod. Comm., 2, 901 (2007).Google Scholar
  12. 12.
    M. T. Makler and A. D. Hinrichs, Am. J. Trop. Med. Hyg., 48, 205 (1993).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Daoud W. Bishay
    • 1
  • Afaf M. Abdel-Baky
    • 1
  • Ahmed M. Moharram
    • 2
  • Lourin G. Malak
    • 1
  • Radhakrishnan Srivedavyasasri
    • 3
  • Samir A. Ross
    • 3
    • 4
  1. 1.Department of Pharmacognosy, Faculty of PharmacyAssiut UniversityAssiutEgypt
  2. 2.Mycological CenterAssiut UniversityAssiutEgypt
  3. 3.National Center for Natural Products, School of PharmacyThe University of MississippiUniversityUSA
  4. 4.Department of BioMolecular Sciences, Pharmacognosy Devision, School of PharmacyThe University of MississippiUniversityUSA

Personalised recommendations