Chemistry of Natural Compounds

, Volume 54, Issue 1, pp 56–62 | Cite as

Synthesis and Bioactivity of N-(4-(N′-Substituted Sulfamoyl)Phenyl)Myrtenamides Containing a Heterocycle

  • Guishan Lin
  • Wengui Duan
  • Hongqiang Liu
  • Yuan Ma
  • Fuhou Lei

A series of N-(4-(N′-substituted sulfamoyl)phenyl)myrtenamides containing a heterocycle were designed and synthesized by a multiple-step procedure using α-pinene as starting material. All the synthesized compounds were characterized and analyzed by GC, HPLC, UV-vis, FTIR, NMR, GC-MS, and ESI-MS. The preliminary bioassay showed that, at 50 μg/mL, the target compounds exhibited a certain antifungal activity against the five tested fungi, in which compound 5f exhibited antifungal activity of 83.2% and 70.0% against Physalospora piricola and Alternaria solani, respectively. Moreover, compound 5d displayed herbicidal activity of 86.0% against the root of rape (Brassica campestris) at 100 μg/mL.


bioactivity myrtenal α-pinene sulfonamide synthesis 



This work was supported by the National Natural Science Foundation of China (No. 31460173) and the open fund of Guangxi Key Laboratory of Chemistry and Engineering of Forest Products (No. GXFC13-02). The authors are grateful to the Research Institute of Element-Organic Chemistry, Nankai University, P. R. China, for the bioassay test.


  1. 1.
    A. C. R. Silva, P. M. Lpoes, M. M. B. Azevedo, D. C. M. Costa, C. S. Alviano, and D. S. Alviano, Molecules, 17, 6305 (2012).CrossRefPubMedGoogle Scholar
  2. 2.
    E. Aydin, H. Turkez, and F. Geyikoglu, Biologia, 68, 1004 (2013).CrossRefGoogle Scholar
  3. 3.
    D. R. Miller and R. J. Rabaglia, J. Chem. Ecol., 35, 435 (2009).CrossRefPubMedGoogle Scholar
  4. 4.
    J. H. Lu, M. G. Lin, and Y. W. Tu, J. Chin. Cereals Oils Assoc., 25, 88 (2010).Google Scholar
  5. 5.
    G. S. Lin, C. H. Ma, W. G. Duan, B. Cen, F. H. Lei, and Z. Q. Yang, Holzforschung, 68, 75 (2014).Google Scholar
  6. 6.
    B. S. Wei, W. Gu, X. Xu, Y. Q. Yang, and S. F. Wang, Chin. J. Org. Chem., 33, 2196 (2013).CrossRefGoogle Scholar
  7. 7.
    H. Kameoka and K. Nakai, Nippon Nogei Kagaku Kaishi, 61, 1119 (1987).CrossRefGoogle Scholar
  8. 8.
    A. Ateeque and L. N. Misra, Phytochemistry, 37, 183 (1994).CrossRefGoogle Scholar
  9. 9.
    D. Vegezzi, U. S. Pat. 4 190 675 (1980).Google Scholar
  10. 10.
    S. Kamchonwongpaisan, C. Nilanonta, B. Tamchompoo, C. Thebtaranonth, Y. Thebtaranonth, Y. Yuthavong, P. Kongsaeree, and J. Clardy, Tetrahedron Lett., 36, 1821 (1995).CrossRefGoogle Scholar
  11. 11.
    H. B. Lingaiah, N. Natarajan, R. Thamaraiselvan, P. Srinivasan, and B. M. Periyasamy, Fundam. Clin. Pharmacol., 27, 443 (2013).CrossRefPubMedGoogle Scholar
  12. 12.
    W. N. Setzer, B. Vogler, J. M. Schmidt, J. G. Leahy, and R. Rives, Fitoterapia, 75, 192 (2004).CrossRefPubMedGoogle Scholar
  13. 13.
    J. Hardie, R. Isaacs, J. A. Pickett, L. J. Wadhams, and C. M. Woodcock, J. Chem. Ecol., 20, 2847 (1994).CrossRefPubMedGoogle Scholar
  14. 14.
    L. Peng, C. X. Yin, F. M. Zhang, Y. H. Liu, and N. Zhou, Chem. Bioeng., 30, 50 (2013).Google Scholar
  15. 15.
    S. Tachibana, Y. Ohno, Y. Fujihara, Y. Okada, M. Sugiura, S. Takagi, and M. Nomura, J. Oleo Sci., 55, 181 (2006).CrossRefGoogle Scholar
  16. 16.
    J. L. Castro, R. Baker, A. R. Guiblin, S. C. Hobbs, M. R. Jenkins, M. G. N. Russell, M. S. Beer, J. A. Stanton, and K. Scholey, J. Med. Chem., 37, 3023 (1994).CrossRefPubMedGoogle Scholar
  17. 17.
    J. L. Archibald, D. R. Beardsley, T. J. Ward, J. F. Waterfall, and J. F. White, J. Med. Chem., 26, 416 (1983).CrossRefPubMedGoogle Scholar
  18. 18.
    S. Beaudoin, K. E. Kinsey, and J. F. Burns, J. Org. Chem., 68, 115 (2002).CrossRefGoogle Scholar
  19. 19.
    M. E. Arranz, J. A. Diaz, S. T. Ingate, M. Witvrouw, C. Pannecouque, J. Balzarini, E. D. Clercq, and S. Vega, Bioorg. Med. Chem., 7, 2811 (1999).CrossRefPubMedGoogle Scholar
  20. 20.
    R. Kuang, J. B. Epp, S. Ruan, H. Yu, P. Huang, S. He, J. Tu, N. M. Schechter, J. Turbov, G. J. Froelich, and W. C. Groutas, J. Am. Chem. Soc., 121, 8128 (1999).CrossRefGoogle Scholar
  21. 21.
    E. Mishani, G. Abourbeh, Y. Rozen, O. Jacobson, D. Laky, I. B. Davida, A. Levitzki, and M. Shaul, Nucl. Med. Biol., 31, 469 (2004).CrossRefPubMedGoogle Scholar
  22. 22.
    G. P. Lahm, D. Cordova, and J. D. Barry, Bioorg. Med. Chem., 17, 4127 (2009).CrossRefPubMedGoogle Scholar
  23. 23.
    G. S. Wu, W. G. Duan, G. S. Lin, B. Cen, L. Zhao, and F. H. Lei, Chin. J. Pestic. Sci., 16, 8 (2014).Google Scholar
  24. 24.
    M. Z. Huang, X. Y. Luo, Y. G. Ren, C. L. Zhang, L. Zhang, and M. C. Xu, Chin. J. Pestic. Sci., 9, 76 (2007).Google Scholar
  25. 25.
    Y. Xu, S. J. Xue, J. F. Sun, Z. K. Fang, A. Q. Yin, and L. Chen, Chin. J. Org. Chem., 28, 1997 (2008).Google Scholar
  26. 26.
    Q. J. Mo, W. G. Duan, X. L. Ma, G. S. Lin, X. T. Xu, and B. Cen, Huaxue Tongbao, 75, 160 (2012).Google Scholar
  27. 27.
    H. E. Eschinazi and H. Pines, J. Org. Chem., 24, 1369 (1959).CrossRefGoogle Scholar
  28. 28.
    J. M. Coxon, G. J. Hydes, and P. J. Steel, J. Chem. Soc. Perkin Trans., 2, 1351 (1984).CrossRefGoogle Scholar
  29. 29.
    M. Nomura, Y. Fujihara, T. Hamada, T. Hirokawa, and K. Tsuzuki, Nippon Nogei Kagaku Kaishi, 66, 1771 (1992).CrossRefGoogle Scholar
  30. 30.
    B. Wiese, G. Knuhl, D. Flubacher, J. W. Prieβ, K. Brodner, and G. Helmchen, Eur. J. Org. Chem., 2005, 3246 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Guishan Lin
    • 1
  • Wengui Duan
    • 1
  • Hongqiang Liu
    • 1
  • Yuan Ma
    • 1
  • Fuhou Lei
    • 2
  1. 1.School of Chemistry and Chemical EngineeringGuangxi UniversityNanningP. R. China
  2. 2.Guangxi Key Laboratory of Chemistry and Engineering of Forest ProductsNanningP. R. China

Personalised recommendations