Advertisement

Chemistry of Natural Compounds

, Volume 53, Issue 2, pp 345–350 | Cite as

Brown Alga Metabolites – Inhibitors of Marine Organism Fucoidan Hydrolases

  • A. S. Silchenko
  • T. I. Imbs
  • T. N. Zvyagintseva
  • S. A. Fedoreyev
  • S. P. Ermakova
Article

Fucoidan hydrolase inhibitors were discovered for the first time. Metabolites in the aqueous EtOH extract of Fucus evanescens inhibited specifically the activity of enzymes involved in catabolism of brown-alga polysaccharides, i.e., fucoidanases (recombinant FFA from the marine bacterium Formosa algae KMM 3553T and PPF from the marine mollusk Patinopecten yessoensis) and glycosidases (recombinant α-L-fucosidase FucFa from F. algae and β-D-glucosidase G-II from the marine mollusk Littorina sitkana). The purified fucophlorethol fraction isolated from this extract inhibited recombinant fucoidanase FFA in the concentration range 10–50 μg/mL.

Keywords

inhibitors enzymes fucoidan hydrolases brown alga phlorotannins 

Notes

Acknowledgment

The work was supported by RFBR Grant No. 15-04-01004.

References

  1. 1.
    K. R. R. Rengasamy, M. G. Kulkarni, W. A. Stirk, and J. Van Staden, Biotechnol. Adv., 32, 1364 (2014).CrossRefPubMedGoogle Scholar
  2. 2.
    N. Asano, Cell. Mol. Life Sci., 66, 1479 (2009).CrossRefPubMedGoogle Scholar
  3. 3.
    V. V. Agarkova, T. N. Krupnova, S. P. Ermakova, N. M. Shevchenko, and T. N. Zvyagintseva, Prikl. Biokhim. Mikrobiol., 43, 511 (2007).PubMedGoogle Scholar
  4. 4.
    T. Shibata, K. Yamaguchi, K. Nagayama, Sh. Kawaguchi, and T. Nakamura, Eur. J. Phycol., 37, 493 (2002).CrossRefGoogle Scholar
  5. 5.
    M. I. Kusaykin, A. S. Silchenko, A. M. Zakharenko, and T. N. Zvyagintseva, Glycobiology, 26 (1), 3 (2016).CrossRefPubMedGoogle Scholar
  6. 6.
    K. Kitamura, M. Matsuo, and T. Yasui, Biosci. Biotechnol. Biochem., 56 (3), 490 (1992).CrossRefPubMedGoogle Scholar
  7. 7.
    A. S. Silchenko, M. I. Kusaykin, V. V. Kurilenko, A. M. Zakharenko, V. V. Isakov, and T. N. Zvyagintseva, Mar. Drugs, 11 (7), 2413 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    A. S. Silchenko, M. I. Kusaykin, A. M. Zakharenko, R. V. Menshova, H. H. N. Khah, P. S. Dmitrenok, V. V. Isakov, and T. N. Zvyagintseva, J. Mol. Catal. B: Enzym., 102, 154 (2014).CrossRefGoogle Scholar
  9. 9.
    M. S. Pesentseva, M. I. Kusaykin, S. D. Anastyuk, V. V. Sova, and T. N. Zvyagintseva, Carbohydr. Res., 343, 2393 (2008).CrossRefPubMedGoogle Scholar
  10. 10.
    M. I. Bilan, A. A. Grachev, N. E. Ustuzhanina, A. S. Shashkov, N. E. Nifantiev, and A. I. Usov, Carbohydr. Res., 337, 719 (2002).CrossRefPubMedGoogle Scholar
  11. 11.
    A. G. McInnes, M. A. Ragan, D. G. Smith, and J. A. Walter, Hydrobiologia, 116/117, 597 (1984).Google Scholar
  12. 12.
    S. Parys, St. Kehraus, A. Krik, K.-W. Glombitza, Sh. Carmeli, K. Klimo, Cl. Gerhauzer, and G. M. Konig, Phytochemistry, 71, 221 (2010).CrossRefPubMedGoogle Scholar
  13. 13.
    Y. Sugiura, K. Matsuda, Y. Yamada, M. Nishikawa, K. Shioya, H. Katsuzaki, K. Imai, and H. Amano, Biosci. Biotechnol. Biochem., 70 (11), 2807 (2006).CrossRefPubMedGoogle Scholar
  14. 14.
    S. Cerantola, F. Breton, E. A. Gall, and E. Deslandes, Bot. Mar., 49, 347 (2006).CrossRefGoogle Scholar
  15. 15.
    N. Heffernan, N. P. Brunton, R. J. FitzGerald, and T. J. Smyth, Mar. Drugs, 13, 509 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    R. Koivikko, J. Loponen, T. Honkanen, and V. Jormalainen, J. Chem. Ecol., 31, 195 (2005).CrossRefPubMedGoogle Scholar
  17. 17.
    T. I. Imbs, A. V. Skriptsova, and T. N. Zvyagintseva, J. Appl. Phycol., 27, 545 (2015).CrossRefGoogle Scholar
  18. 18.
    A. V. Skriptsova, N. M. Shevchenko, T. N. Zvyagintseva, and T. I. Imbs, J. Appl. Phycol., 22, 79 (2010).CrossRefGoogle Scholar
  19. 19.
    M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, and T. L. Madden, Nucleic Acid Res. (Web Server Issue), 36, 5 (2008).Google Scholar
  20. 20.
    F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Soding, J. D. Thompson, and D. G. Higgins, Mol. Syst. Biol., 7 (539), 1 (2011).Google Scholar
  21. 21.
    O. Emanuelsson, S. Brunak, G. von Heijne, and H. Nielsen, Nat. Protoc., 2, 953 (2007).CrossRefPubMedGoogle Scholar
  22. 22.
    P. Jones, D. Binns, H. Y. Chang, M. Fraser, W. Li, C. McAnulla, H. McWilliam, J. Maslen, A. Mitchell, G. Nuka, S. Pesseat, A. F. Quinn, A. Sangrador-Vegas, M. Scheremetjew, S. Y. Yong, R. Lopez, and S. Hunter, Bioinformatics, 30 (9), 1236 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    F. van den Ent and J. Lowe, J. Biochem. Biophys. Methods, 67 (1), 67 (2006).CrossRefPubMedGoogle Scholar
  24. 24.
    T. E. Nelson, J. V. Scarletti, F. Smith, and S. Kirkwood, Can. J. Chem., 245, 1671 (1962).Google Scholar
  25. 25.
    U. K. Laemmli, Nature, 277 (5259), 680 (1970).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • A. S. Silchenko
    • 1
  • T. I. Imbs
    • 1
  • T. N. Zvyagintseva
    • 1
  • S. A. Fedoreyev
    • 1
  • S. P. Ermakova
    • 1
  1. 1.G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations