Chemistry of Natural Compounds

, Volume 53, Issue 2, pp 276–283 | Cite as

Synthesis of Rupestonic Acid Derivatives with Antiviral Activity

Article
  • 68 Downloads

A series of 23 new rupestonic acid derivatives were synthesized. Their activities against influenza viruses A (H3N2, H1N1) and B were studied. Compounds 2d and 2g demonstrated potent activity against influenza virus A (H3N2) with IC50 values of 0.35 and 0.21 μM, respectively. Compound 5g (n = 10) was the most potent compound of this series against influenza viruses H3N2 and H1N1 with IC50 values of 2.89 and 0.38 μM. Several of the synthesized compounds were weakly active against influenza virus B and were more toxic than starting rupestonic acid.

Keywords

rupestonic acid synthesis influenza virus 

Notes

Acknowledgment

The work was supported financially by the Chinese National Natural Sciences Foundation (No. 81402808), Xinjiang Natural Sciences Foundation (No. 2014211A070), West Light Foundation of the Chinese Academy of Sciences (No. XBBS201218), and Youth Association for Innovation of the Chinese Academy of Sciences. We thank researchers from the Institute of Medical Biotechnologies, Academy of Medical Sciences, and Beijing Medical College for assistance with activity testing of the synthesized anti-influenza compounds.

References

  1. 1.
    S. Yagi, J. Ono, J. Yoshimoto, K. Sugita, N. Hattori, T. Fujioka, T. Fujiwara, H. Sugimoto, K. Hirano, and N. Hashimoto, Pharm. Res., 16 (7), 1041 (1999).CrossRefPubMedGoogle Scholar
  2. 2.
    J. Y. Sun, S. X. Cai, N. Yan, and H. Mei, Eur. J. Med. Chem., 45, 1008 (2010).CrossRefPubMedGoogle Scholar
  3. 3.
    J. M. Song, K. D. Park, K. H. Lee, Y. H. Byun, H. Park, S. H. Kim, J. H. Kim, and B. L. Seong, Antiviral Res., 76, 178 (2007).CrossRefPubMedGoogle Scholar
  4. 4.
    C. W. Sun, H. Huang, M. Q. Feng, X. L. Shi, X. D. Zhang, and P. Zhou, Bioorg. Med. Chem. Lett., 16, 162 (2006).CrossRefPubMedGoogle Scholar
  5. 5.
    G. Z. Tang, X. F. Lin, Z. X. Qiu, W. T. Li, L. Zhu, L. S. Wang, S. H. Li, H. D. Li, W. B. Lin, M. Yang, T. Guo, L. Chen, D. Lee, J. Z. Wu, and W. G. Yang, Med. Chem. Lett., 2, 603 (2011).CrossRefGoogle Scholar
  6. 6.
    X. Zhao, Y. L. Jie, M. R. Rosenberg, J. T. Wan, S. G. Zeng, W. Cui, Y. P. Xiao, Z. Y. Li, Z. C. Tu, M. G. Casarotto, and W. H. Hu, Antiviral Res., 96, 91 (2001).CrossRefGoogle Scholar
  7. 7.
    T. Wang and R. C. Wade, J. Med. Chem., 44, 961 (2001).CrossRefPubMedGoogle Scholar
  8. 8.
    D. F. Smee, J. H. Huffman, A. C. Morrison, D. L. Barnard, and R. W. Sidwell, Antimicrob. Agents Chemother., 45 (3), 743 (2001).CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    P. Chand, S. Bantia, P. L. Kotian, Y. El-Kattan, T. H. Lin, and Y. S. Babu, Bioorg. Med. Chem., 13, 4071 (2005).CrossRefPubMedGoogle Scholar
  10. 10.
    T. M. Asuda, S. Yoshida, M. A. Rai, S. K. Aneko, M. Y. Amashita, and T. Honda, Chem. Pharm. Bull., 51 (12), 1386 (2003).CrossRefGoogle Scholar
  11. 11.
    C. U. Kim, W. Lew, M. A. Williams, H. Wu, L. Zhang, X. Chen, P. A. Escarpe, D. B. Mendel, W. G. Laver, and R. C. Stevens, J. Med. Chem., 41, 2451 (1998).CrossRefPubMedGoogle Scholar
  12. 12.
    A. C. Schmidt, Drugs, 64, 2031 (2004).CrossRefPubMedGoogle Scholar
  13. 13.
    A. Moscona, N. Engl. J. Med., 353, 1363 (2005).CrossRefPubMedGoogle Scholar
  14. 14.
    R. J. Russell, L. F. Haire, D. J. Stevens, P. J. Collins, Y. P. Lin, G. M. Blackburn, A. J. Hay, S. J. Gamblin, and J. J. Skehel, Nature, 443, 45 (2006).CrossRefPubMedGoogle Scholar
  15. 15.
    M. Takagi, K. Motohashi, A. Nagai, M. Izumikawa, M. Tanaka, S. Fuse, T. Doi, K. Iwase, A. Kawaguchi, K. Nagata, T. Takahashi, and Y. K. Shin, Org. Lett., 12 (20), 4664 (2010).CrossRefPubMedGoogle Scholar
  16. 16.
    X. Y. Chen and S. H. Wang, Chin. Tradit. Herb. Drugs, 12, 25 (1981).Google Scholar
  17. 17.
    B. H. Zhan, Y. N. Wang, and Y. Q. Zhang, Chin. J. Mod. Med., 15, 1968 (2005).Google Scholar
  18. 18.
    E. B. Srapil, Y. S. F. Abdiryim, and D. W. T. Gulnar, Chin. J. Integr. Tradit. West. Med., 22, 126 (2002).Google Scholar
  19. 19.
    E. B. Srapil, D. W. T. Gulnar, and F. Liu, Chin. J. Tradit. Drugs, 2, 35 (1996).Google Scholar
  20. 20.
    M. Miski, D. H. De Luengo, and T. J. Mabry, Phytochemistry, 26, 199 (1987).CrossRefGoogle Scholar
  21. 21.
    J. Y. Zhao and H. A. Aisa, Bioorg. Med. Chem. Lett., 22, 2321 (2012).CrossRefPubMedGoogle Scholar
  22. 22.
    J. P. Yong, Q. Y. Lv, and H. A. Aisa, Bull. Korean Chem. Soc., 30 (2), 435 (2009).CrossRefGoogle Scholar
  23. 23.
    J. P. Yong and H. A. Aisa, Bull. Korean Chem. Soc., 32 (4), 1293 (2011).CrossRefGoogle Scholar
  24. 24.
    Y. W. He, C. Z. Dong, J. Y. Zhao, L. L. Ma, Y. H. Li, and H. A. Aisa, Eur. J. Med. Chem., 76, 245 (2014).CrossRefPubMedGoogle Scholar
  25. 25.
    Z. B. Lian, Y. Huang, and L. H. Cao, Chin. J. Appl. Chem., 20, 288 (2003).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jiangyu Zhao
    • 1
    • 2
  • Chao Niu
    • 1
    • 2
  • Gen Li
    • 1
    • 2
  • Haji Akber Aisa
    • 1
    • 2
  1. 1.The Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of SciencesUrumqiChina
  2. 2.State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of SciencesUrumqiChina

Personalised recommendations