Advertisement

Chemistry of Natural Compounds

, Volume 52, Issue 6, pp 992–995 | Cite as

Coumarins from the Leaves of Nicotiana tabacum and Their Anti-Tobacco Mosaic Virus Activities

  • Chun-Bo Liu
  • Qin-Peng Shen
  • Yun Wang
  • Feng-Mei Zhang
  • Pei He
  • Xiao-Xi Si
  • Kun-Miao Wang
  • Rui-Zhi Zhu
  • Neng-Jun Xiang
  • Zhi-Hua Liu
Article

Two new coumarins, 6-hydroxy-7-methyl-3-(4′-methoxyphenyl)-coumarin (1) and 6-hydroxy-5-methoxy-7-methyl-3-(4′-methoxyphenyl)-coumarin (2), together with five known coumarins (3–7), were isolated from the leaves of Nicotiana tabacum. Their structures were determined by means of HR-ESI-MS and extensive 1D and 2D NMR spectroscopic studies. Compounds 1–7 were tested for their anti-tobacco mosaic virus (anti-TMV) activities. Compound 2 showed high anti-TMV activity with inhibition rate of 28.6%. This rate is close to that of the positive control. The other compounds also showed potential anti-TMV activity with inhibition rates in the ranges of 13.7–23.2%, respectively.

Keywords

coumarins Nicotiana tabacum anti-tobacco mosaic virus 

Notes

Acknowledgment

This research was supported by the National Natural Science Foundation of China (No. 31360081), the Basic Research Foundation of Yunnan Province (2013FB097), and the Basic Research Foundation of Yunnan Tobacco Industry Co. Ltd (2012JC01).

References

  1. 1.
    The Editorial Committee of the Administration Bureau of Flora of China, Flora of China, Vol. 67, Beijing Science and Technology Press, Beijing, 2005.Google Scholar
  2. 2.
    A. Rodgman and T. A. Perfetti, The Chemical Components of Tobacco and Tobacco Smoke. CRC Press, Taylor and Francis, Boca Raton, Florida, 2008.Google Scholar
  3. 3.
    M. M. Miao, L. Li, Q. P. Shen, C. B. Liu, Y. K. Li, T. Zhang, F. M. Zhang, P. He, K. M. Wang, R. Z. Zhu, Y. K. Chen, and G. Y. Yang, Fitoterapia, 103, 260 (2015).CrossRefPubMedGoogle Scholar
  4. 4.
    G. Y. Yang, W. Zhao, Y. K. Chen, Z. Y. Chen, Q. F. Hu, and M. M. Miao, Asian. J. Chem., 25, 4932 (2013).Google Scholar
  5. 5.
    X. C. Wei, S. C. Sumithran, A. G. Deaciuc, H. R. Burton, L. P. Bush, L. P. Dwoskin, and P. A. Crooks, Life Sci., 78, 495 (2005).CrossRefPubMedGoogle Scholar
  6. 6.
    T. Braumann, G. Nicolaus, W. Hahn, and H. Elmenhorst, Phytochemistry, 29, 3693 (1990).CrossRefGoogle Scholar
  7. 7.
    Y. K. Chen, X. S. Li, G. Y. Yang, Z. Y. Chen, Q. F. Hu, and M. M. Miao, J. Asian. Nat. Prod. Res., 14, 450 (2012).CrossRefPubMedGoogle Scholar
  8. 8.
    X. M. Gao, X. S. Li, X. Z. Yang, H. X. Mu, Y. K. Chen, G. Y. Yang, and Q. F. Hu, Heterocycles, 85, 147 (2012).CrossRefGoogle Scholar
  9. 9.
    J. X. Chen, H. Q. Leng, Y. X. Duan, W. Zhao, G. Y. Yang, Y. D. Guo, Y. K. Chen, and Q. F. Hu, Phytochem. Lett., 6, 144 (2013).CrossRefGoogle Scholar
  10. 10.
    W. Zhao, L. Li, P. Lei, L. Yang, S. Z. Shang, J. G. Tang, G. Y. Yang, Y. K. Chen, and M. M. Miao, Phytochem. Lett., 12, 125 (2015).CrossRefGoogle Scholar
  11. 11.
    H. Q. Leng, J. X. Chen, Y. Hang, Y. X. Duan, G. Y. Yang, Y. K. Chen, Y. D. Guo, Q. F. Hu, and M. M. Miao, Chem. Nat. Compd., 49, 1028 (2014).CrossRefGoogle Scholar
  12. 12.
    G. Y. Yang, W. Zhao, T. Zhang, Y. X. Duan, Z. H. Liu, M. M. Miao, and Y. K. Chen, Heterocycles, 89, 183 (2014).CrossRefGoogle Scholar
  13. 13.
    S. Z. Shang, W. X. Xu, P. Lei, W. Zhao, J. G. Tang, M. M. Miao, H. D. Sun, J. X. Pu, Y. K. Chen, and G. Y. Yang, Fitoterapia, 99, 35 (2014).CrossRefPubMedGoogle Scholar
  14. 14.
    S. Z. Shang, Y. X. Duan, X. Zhang, J. X. Pu, H. D. Sun, Z. Y. Chen, Mi. M. Miao, G. Y. Yang, and Y. K. Chen, Phytochem. Lett., 7, 413 (2014).Google Scholar
  15. 15.
    S. Z. Shang, W. X. Xu, L. Li, J. G. Tang, W. Zhao, P. Lei, M. M. Miao, H. D. Sun, J. X. Pu, Y. K. Chen, and G. Y. Yang, Phytochem. Lett., 11, 53 (2015).CrossRefGoogle Scholar
  16. 16.
    H. N. Lv, S. Wang, K. W. Zeng, J. Li, X. Y. Guo, D. Ferreira, J. K. Zjawiony, P. F. Tu, and Y. Jiang, J. Nat. Prod., 78, 279 (2015).CrossRefPubMedGoogle Scholar
  17. 17.
    D. Q. Yu and J. S. Yang, Handbook of Analytical Chemistry (7th Volume), Nuclear Magnetic Resonance Spectroscopy, Chemical Industry Press, 2nd Ed., Beijing, 1999.Google Scholar
  18. 18.
    A. Hitoshti, K. Ichiro, I. Kazuhiko, and I. Kazuo, J. Nat. Prod., 49, 366 (1986).CrossRefGoogle Scholar
  19. 19.
    J. H. Lee, H. B. Bang, S. Y. Han, and J. G. Jun, Tetrahedron Lett., 48, 2889 (2007).CrossRefGoogle Scholar
  20. 20.
    C. Lei, W. X. Xu, J. Wu, S. J. Wang, J. Q. Sun, Z. Y. Chen, and G. Y. Yang, Chem. Nat. Compd., 51, 43 (2015).CrossRefGoogle Scholar
  21. 21.
    Y. K. Li, B. Zhou, X. X. Wu, G. Du, Y. Q. Ye, X. M. Gao, and Q. F. Hu, Chem. Nat. Compd., 51, 50 (2015).CrossRefGoogle Scholar
  22. 22.
    Q. F. Hu, B. Zhou, J. M. Huang, X. M. Gao, L. D. Shu, G. Y. Yang, and C. T. Che, J. Nat. Prod., 76, 292 (2013).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Chun-Bo Liu
    • 1
  • Qin-Peng Shen
    • 1
  • Yun Wang
    • 1
    • 2
  • Feng-Mei Zhang
    • 1
  • Pei He
    • 1
  • Xiao-Xi Si
    • 1
  • Kun-Miao Wang
    • 1
  • Rui-Zhi Zhu
    • 1
  • Neng-Jun Xiang
    • 1
  • Zhi-Hua Liu
    • 1
  1. 1.Key Laboratory of Tobacco Chemistry of Yunnan Province, Research and Development Center, China Tobacco Yunnan Industrial Co., Ltd.KunmingP. R. China
  2. 2.School of Chemical Science and TechnologyYunnan UniversityKunmingP. R. China

Personalised recommendations