Chemistry of Natural Compounds

, Volume 52, Issue 4, pp 721–723 | Cite as

Ellagitannins and Other Phenolic Compounds from Comarum palustre

  • D. N. Olennikov

Comarum palustre L. (marsh cinquefoil, Rosaceae) is a medicinal plant from marshy areas of the boreal and tundra zones of Siberia and the Far East. Preparations of it are used to treat musculoskeletal diseases as an anti-inflammatory and antibacterial agent [1]. Roots of the plant are used. Overharvesting of them is leading to extensive destruction of natural populations and disruption of the ecological equilibrium of forest ecosystems. Sustainable harvesting technologies must be used for this plant in order to improve the current situation. The aerial part of the plant was proposed as an alternative source of the drugs during the studies. Information on the chemical composition of C. palustre is limited to reports that the subterranean organs contained procyanidins [2]; the aerial part, 2-pyrone-4,6-dicarboxylic acid [3], gossypetrin, (–)-epigallocatechin-3-Ogallate, essential oil, and chebulinic acid [4]. The presence of the last compound in C. palustreis doubtful because...


Ellagic Acid Me2CO Isoquercitrin Astragalin Phyllanthus Emblica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was sponsored by SB RAS Project No. VI.62.1.8.


  1. 1.
    G. N. Buzuk, M. Ya. Lovkova, O. A. Ershik, and S. M. Sokolova, Dokl. Biochem Biophys., 421, 211 (2008); S. V. Golubev and A. A. Efremov, Khim. Rastit. Syr’ya, No. 1, 105 (2012).Google Scholar
  2. 2.
    O. A. Yerschik, M. Ya. Lovkova, G. N. Buzuk, and S. M. Sokolova, Dokl. Biol. Sci., 429, 535 (2009).Google Scholar
  3. 3.
    S. Wilkes and H. Glasl, Phytochemistry, 58, 441 (2001).CrossRefPubMedGoogle Scholar
  4. 4.
    G. N. Naumchik, Phytochemical Studies of Marsh Cinquefoil and Preparation from it of Several Drugs [in Russian], Author’s Abstract of a Candidate Dissertation, Leningrad, 1964, 16 pp.Google Scholar
  5. 5.
    D. N. Olennikov, N. I. Kashchenko, and N. K. Chirikova, Nutrients, 7, 8456 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    D. N. Olennikov, N. I. Kashchenko, H. Schwabl, C. Vennos, and C. Loepfe, Chem. Nat. Compd., 51, 666 (2015).CrossRefGoogle Scholar
  7. 7.
    A. Tuominen, J. Sinkkonen, M. Karonen, and J.-P. Salminen, Phytochemistry, 115, 239 (2015).CrossRefPubMedGoogle Scholar
  8. 8.
    P. Li, L. Zhao, Y. Du, Y. Feng, and Y. Li, Adv. J. Food Sci. Technol., 5, 255 (2013).Google Scholar
  9. 9.
    O. Cala, N. Pinaud, C. Simon, E. Fouquet, M. Laguerre, E. J. Dufourc, and I. Piane, FASEB J., 24, 1 (2010).CrossRefGoogle Scholar
  10. 10.
    D. N. Olennikov, L. M. Tankhaeva, and S. V. Agafonova, Appl. Biochem. Microbiol., 47, 419 (2011).CrossRefGoogle Scholar
  11. 11.
    T. Okuda, T. Yoshida, M. Ashida, and K. Yazaki, J. Chem. Soc. Perkin Trans. 1, 1765 (1983).CrossRefGoogle Scholar
  12. 12.
    D. N. Olennikov, N. I. Kashchenko, N. K. Chirikova, and S. S. Kuz’mina, Molecules, 20, 224 (2015).Google Scholar
  13. 13.
    D. N. Olennikov and V. V. Partilkhaev, J. Planar Chromatogr., 25, 30 (2012).CrossRefGoogle Scholar
  14. 14.
    I. Merfort and D. Wendisch, Planta Med., 54, 247 (1988).CrossRefPubMedGoogle Scholar
  15. 15.
    C.-Y. Chen, S.-L. Hsieh, M.-M. Hsieh, S.-F. Hsieh, and T.-J. Hseih, Chin. Pharm. J., 56, 141 (2004).Google Scholar
  16. 16.
    D. N. Olennikov, L. M. Tankhaeva, V. V. Partilkhaev, and A. V. Rokhin, Braz. J. Pharmacogn., 22, 490 (2012).CrossRefGoogle Scholar
  17. 17.
    Y. Hua and H.-Q. Wang, J. Chin. Chem. Soc., 51, 409 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of General and Experimental Biology, Siberian BranchRussian Academy of SciencesUlan-UdeRussia

Personalised recommendations