Advertisement

Chemistry of Natural Compounds

, Volume 52, Issue 4, pp 697–699 | Cite as

Secondary Metabolites from an Endophytic Fungus Nigrospora sp.

  • Rong Huang
  • Tang Wang
  • Xiao-Song Xie
  • Kai-Xia Ma
  • Xiao-Wei Fang
  • Shao-Hua Wu
Article

Endophytic microorganisms are found in virtually every plant on earth. Natural products from endophytic fungi have been observed to inhibit or kill a wide variety of harmful microorganisms including, but not limited to, phytopathogens, as well as bacteria, fungi, viruses, and protozoans that affect humans and animals [1]. Fungi belonging to the genus Nigrospora have been a rich source of bioactive secondary metabolites, such as plant growth-inhibiting nigrosporolide and phomalactone, phytotoxic and antibacterial nigrosporins, and phytotoxic lactones [2]. During our continuous chemical investigation of endophytic fungi, we have studied the secondary metabolites of Nigrospora sp. YE 3033 isolated from Aconitum carmichaelii and obtained nine compounds.

The fungal strain Nigrospora sp. YE 3033 was isolated from the root of A. carmichaelii collected in Yunnan Province, P. R. China. It was classified as a Nigrosporaspecies by its morphological characteristics and ITS rDNA sequence...

Keywords

MeOH Minimal Inhibition Concentration EtOAc CD3OD Endophytic Fungus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This work was supported by grants from the National Natural Science Foundation of China (Program Nos. 81460545 and 21062027), and the Natural Science Foundation of Yunnan Province (Program No. 2010CD009).

References

  1. 1.
    G. A. Strobel, B. Daisy, U. Castillo, and J. Harper, J. Nat. Prod., 67, 257 (2004).CrossRefPubMedGoogle Scholar
  2. 2.
    K. Trisuwan, V. Rukachaisirikul, Y. Sukpondma, S. Preedanon, S. Phongpaichit, N. Rungjindamai, and J. Sakayaroj, J. Nat. Prod., 71, 1323 (2008).CrossRefPubMedGoogle Scholar
  3. 3.
    M. R. Dhananjeyan, Y. P. Milev, M. A. Kron, and M. G. Nair, J. Med. Chem., 48, 2822 (2005).CrossRefPubMedGoogle Scholar
  4. 4.
    R. N. Santos, M. G. V. Silva, and R. Braz Filho, Quim. Nova, 31, 1979 (2008).CrossRefGoogle Scholar
  5. 5.
    Y. Berger and A. Castonguay, Org. Magn. Reson., 11, 375 (1978).CrossRefGoogle Scholar
  6. 6.
    D. Ngamga, M. D. Awouafack, P. Tane, M. Bezabih, and B. M. Abegaz, Biochem. Syst. Ecol., 35, 709 (2007).CrossRefGoogle Scholar
  7. 7.
    P. L. Bartel, C. B. Zhu, J. S. Lampel, D. C. Dosch, N. C. Connors, W. R. Strohl, J. M. Beale Jr., and H. G. Floss, J. Bacteriol., 172, 4816 (1990).PubMedPubMedCentralGoogle Scholar
  8. 8.
    J. H. Zaidi, F. Naeem, R. Iqbal, M. I. Choudhary, K. M. Khan, S. Perveen, S. T. A. Shah, S. Hayat, and W. Voelter, Z. Naturforsch., 56b, 689 (2001).Google Scholar
  9. 9.
    B. M. Fraga, N. Quintana, and C. E. Diaz, Chem. Biodivers., 6, 182 (2009).CrossRefPubMedGoogle Scholar
  10. 10.
    D. W. Cameron and R. M. Heisey, Aust. J. Chem., 53, 109 (2000).CrossRefGoogle Scholar
  11. 11.
    G. Gremaud and R. Tabacchi, Phytochemistry, 42, 1547 (1996).CrossRefGoogle Scholar
  12. 12.
    J. M. Gao, L. Hu, Z. J. Dong, and J. K. Liu, Lipids, 36, 521 (2001).CrossRefPubMedGoogle Scholar
  13. 13.
    S. H. Wu, J. He, X. N. Li, R. Huang, F. Song, Y. W. Chen, and C. P. Miao, Phytochemistry, 105, 197 (2014).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rong Huang
    • 1
  • Tang Wang
    • 2
  • Xiao-Song Xie
    • 2
  • Kai-Xia Ma
    • 2
  • Xiao-Wei Fang
    • 2
  • Shao-Hua Wu
    • 2
  1. 1.School of Chemical Science and TechnologyYunnan UniversityKunmingP. R. China
  2. 2.Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of MicrobiologyYunnan UniversityKunmingP. R. China

Personalised recommendations