Advertisement

Chemistry of Natural Compounds

, Volume 52, Issue 1, pp 134–135 | Cite as

Characterization and Quantification of Polyphenolic Compounds from Adenium Obesum Leaves

  • N. R. Meda
  • D. Fraisse
  • C. Gnoula
  • C. Peyrode
  • O. Texier
  • F. Senejoux
  • C. Felgines
Article
  • 87 Downloads

Adenium obesum (Forssk.) Roem. & Schult. is a deciduous succulent shrub or small tree that belongs to the Apocynaceae family [1]. Also known as desert rose, this species occurs naturally in a wide area of Africa as well as in certain regions of the Arabian Peninsula. The plant is extensively prescribed in traditional medicine to treat several ailments including skin infections, venereal diseases, lice infestation, or rhinitis [2]. Several chemical analyses have led to the identification of numerous cardenolide glycosides, steroids, and triterpene derivatives [3, 4, 5, 6]. However, the phenolic composition of A. obesum has been poorly investigated and only two flavonol derivatives have been reported so far [3]. The present study aimed thus at performing a qualitative and quantitative analysis of the phenolic content of the leaves of this species.

In this way, leaves of A. obesumwere collected at Ouagadougou, Burkina Faso, in September 2012 and identified by Dr. C. Gnoula. A voucher...

Keywords

Rutin Chlorogenic Acid Kaempferol Total Flavonoid Content Cardenolide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The authors gratefully acknowledge Bernard Lyan for technical support with mass spectrometry.

References

  1. 1.
    M. E. Endress and P. V. Bruyns, Bot. Rev., 66, 1 (2000).CrossRefGoogle Scholar
  2. 2.
    H. D. Neuwinger, African Traditional Medicine: a Dictionary of Plant Use and Applications, Medpharm Scientific, Stuttgart, 2000, p. 589.Google Scholar
  3. 3.
    J. J. Hoffmann and J. R. Cole, J. Pharm. Sci., 66, 1336 (1977).CrossRefPubMedGoogle Scholar
  4. 4.
    M. A. Arai, C. Tateno, T. Koyano, T. Kowithayakorn, S. Kawabe, and M. Ishibashi, Org. Biomol. Chem., 9, 1133 (2011).CrossRefPubMedGoogle Scholar
  5. 5.
    M. Nakamura, M. Ishibashi, E. Okuyama, T. Koyano, T. Kowithayakorn, M. Hayashi, and K. Komiyama, Nat. Med., 54, 158 (2000).Google Scholar
  6. 6.
    A. Tijjani, I. G. Ndukwe, and R. G. Ayo, Trop. J. Pharm. Res., 11, 259 (2012).CrossRefGoogle Scholar
  7. 7.
    N. Cicco, M. T. Lanorte, M. Paraggio, M. Viggiano, and V. Lattanzio, Microchem. J., 91, 107 (2009).CrossRefGoogle Scholar
  8. 8.
    A. O. Danila, F. Gatea, and G. L. Radu, Chem. Nat. Compd., 47, 22 (2011).CrossRefGoogle Scholar
  9. 9.
    A. A. L. Ordonez, J. D. Gomez, M. A. Vattuone, and M. I. lsla, Food Chem., 97, 452 (2006).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • N. R. Meda
    • 1
  • D. Fraisse
    • 1
  • C. Gnoula
    • 2
  • C. Peyrode
    • 3
  • O. Texier
    • 1
  • F. Senejoux
    • 1
  • C. Felgines
    • 1
  1. 1.Faculte de Pharmacie, Laboratoire de Pharmacognosie et PhytotherapieClermont Universite, Universite d′Auvergne, UMR 1019 Equipe ECREINClermont-Ferrand Cedex 1France
  2. 2.Universite de Ouagadougou, UFR/SDS, Laboratoire de Pharmacologie, de Toxicologie et de Chimie TherapeutiqueOuagadougouBurkina Faso
  3. 3.Universite d′Auvergne, UMR 990 InsermClermont-FerrandFrance

Personalised recommendations