Advertisement

Chemistry of Natural Compounds

, Volume 51, Issue 6, pp 1171–1173 | Cite as

Tissue Carotinoid Composition of the Far-East Bivalve Mollusk Anadara broughtoni

  • O. V. Tabakaeva
  • A. V. Tabakaev
Article

Hydrobionts of marine and freshwater aquifers, especially invertebrates such as crustaceans, mollusks, and echinoderms (sea cucumbers and urchins), differ from many terrestrial and aquatic organisms by having a large variety of metabolites that are dominated by functionalized compounds [1, 2]. The functionalized compounds include carotinoids, phospholipids, saponins, and polyunsaturated ω-3 and ω-6 fatty acids (PUFA) that exhibit antioxidant (AOA), immunomodulating, radioprotective, hypolipidemic, and antitumor activity [3, 4]. This prompted studies of the lipids [5], amino acids [6], and other biologically active classes including carotinoids [7].

Marine organisms, in contrast to terrestrial ones, contain carotinoids with a broad array of functional groups and chemical bonds, which increases the reactivity toward active oxygen species and free radicals [8]. The most potent carotinoidantioxidants may occur in organisms that are resistant to hypoxia, anoxia, and thermal and salt stress...

Keywords

Zeaxanthin Bivalve Mollusk Trihydroxy Quantitative Content Me2CO 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The work was sponsored by the Russian Scientific Foundation (Project No. 14-50-00034).

References

  1. 1.
    O. A. Drozdova, S. A. Avilov, A. I. Kalinovskii, V. A. Stonik, Yu. M. Mil′grom, and Ya. V. Rashkes, Chem. Nat. Compd., 29, 309 (1993).CrossRefGoogle Scholar
  2. 2.
    T. K. Lebskaya, Yu. F. Dvinin, and L. L. Konstantinova, Chemical Composition and Properties of Hydrobionts from the Barents and White Sea Littoral Zones [in Russian], PINRO, Murmansk, 1998, 185 pp.Google Scholar
  3. 3.
    V. A. Tutel′yan, Vopr. Pitan., 6, 3 (1996).Google Scholar
  4. 4.
    A. V. Sergeev, L. A. Vakulova, M. Ya. Shashkina, and T. A. Zhidkova, Vopr. Med. Khim., 6, 8 (1992).Google Scholar
  5. 5.
    A. V. Esipov, N. G. Busarova, and S. V. Isai, Chem. Nat. Compd., 50, 1099 (2014).Google Scholar
  6. 6.
    K. G. Bogolitsyn, P. A. Kaplitsin, and A. S. Pochtovalova, Chem. Nat. Compd., 49, 1110 (2014).CrossRefGoogle Scholar
  7. 7.
    N. M. Rebachuk, O. B. Maksimov, L. S. Boguslavskaya, and S. A. Fedoreev, Chem. Nat. Compd., 20, 407 (1984).CrossRefGoogle Scholar
  8. 8.
    G. Britton, S. Liaaen-Jensen, and H. Pfander (eds.), Carotenoids Handbook, Birkhauser, Basel, 2004, 672 pp.Google Scholar
  9. 9.
    I. Konishi, M. Hosokawa, T. Sashima, T. Maoka, and K. Miyashita, J. Oleo Sci., 57, 181 (2008).CrossRefPubMedGoogle Scholar
  10. 10.
    I. S. Arzamastsev, Yu. M. Yakovlev, and G. A. Evseev, Atlas of Commercial Invertebrates and Algae of Russian Far-East Seas, Avante, Vladivostok, 2001, 192 pp.Google Scholar
  11. 11.
    L. Yu. Lazhentseva and E. V. Likhacheva, Izv. Vyssh. Uchebn. Zaved., Pishch. Tekhnol., 5, 63 (2008).Google Scholar
  12. 12.
    A. S. Grishin, T. A. Davletshina, S. V. Levan′kov, and L. V. Shul′gina, Izv. Tikhookean. Nauchno-Issled. Ribokhoz. Tsentr, 138, 368 (2004).Google Scholar
  13. 13.
    T. Maoka, Y. Fujiwara, K. Hashimoto, and N. Akimoto, J. Agric. Food Chem., 55, 1563 (2007).CrossRefPubMedGoogle Scholar
  14. 14.
    T. Matsuno and T. Maoka, Bull. Jpn. Soc. Sci. Fish., 47, 495 (1981).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Far-East Federal University, School of BiomedicineVladivostokRussia

Personalised recommendations