Chemistry of Natural Compounds

, Volume 51, Issue 5, pp 835–839 | Cite as

Cytotoxic Activity of Black Tea Theaflavin Digallates Against Chinese Hamster Ovary Cells (CHOK1) and Rat Glioma Cells (C-6)

  • Ajay Rana
  • Dharmesh Kumar
  • Robin Joshi
  • Ashu Gulati
  • Harsh Pratap Singh

The present study reports the comparative in vitro cytotoxicity of theaflavin digallate (2) and isotheaflavin digallate (1), a new black tea theaflavin against Chinese hamster ovary cells (CHOK1) and rat glioma cells (C-6). Compound 1 was formed by the immobilized polyphenol oxidase (PPO) mediated enzymatic oxidation of (–) GCG and (–) ECG along with compound 2, which was formed by enzymatic oxidation of (–) EGCG and (–) ECG. The structures of the compounds were elucidated using ESI-Q-TOF-MS and 1D and 2D NMR. The results of a comparative cytotoxicity assay have revealed that isotheaflavin digallate is more cytotoxic than theaflavin digallate (IC50 246.8 μg/mL against CHOK1, IC50 288.8 μg/mL against C-6 cells).


tea catechins polyphenol oxidase theaflavin digallates cytotoxicity 



We express our gratitude to the Director, CSIR-Institute of Himalayan Bioresource Technology for encouragement.


  1. 1.
    A. R. Ipeaiyeda and M. Dawodu, Electron. J. Environ. Agric. Food Chem., 10, 2240 (2011).Google Scholar
  2. 2.
    M. Salahinejad and F. Aaki, Biol. Trace Elem. Res., 134, 109 (2010).CrossRefPubMedGoogle Scholar
  3. 3.
    M. Yemane, B. S. Chandravanshi, and T. Wondimu, Food Chem., 107, 1236 (2008).Google Scholar
  4. 4.
    A. Kumar, A. Nair, A. V. R. Reddy, and A. N. Garg, Food Chem., 89, 441 (2005).CrossRefGoogle Scholar
  5. 5.
    E. A. H. Roberts, J. Sci. Food Agric., 9, 381 (1959).CrossRefGoogle Scholar
  6. 6.
    D. J. Millin, D. J. Crispin, and D. Swaine, J. Agric. Food Chem., 17, 717 (1969).CrossRefGoogle Scholar
  7. 7.
    S. Scharbert, M. Jezussek, and T. Hofmann, Eur. Food Res. Techol., 218, 442 (2004).CrossRefGoogle Scholar
  8. 8.
    K. L. Leung, Y. Su, R. Chen, Z. Zhang, Y. Haung, and Z. Chen, J. Nutr., 131, 2248 (2001).PubMedGoogle Scholar
  9. 9.
    Z. Yang, G. Jie, F. Dong, Y. Xu, N. Watanabe, and Y. Tu, Toxic. Vitro, 22, 1250 (2008).CrossRefGoogle Scholar
  10. 10.
    D. T. Coxan, A. Holmes, and W. D. Olis, Tetrahedron Lett., 60, 5241 (1970).CrossRefGoogle Scholar
  11. 11.
    J. R. Lewis, A. L. Davis, Y. C. Alan, A. P. Davis, J. P. Wilkins, and M. Pennington, Phytochemistry, 49, 2511 (1998).Google Scholar
  12. 12.
    S. Sang, S. Tian, R. E. Stark, C. S. Yang, and C. T. Ho, Bioorg. Med. Chem., 12, 3009 (2004).CrossRefPubMedGoogle Scholar
  13. 13.
    J. Peterson, J. Dwyer, S. Bhagwat, D. Haytowitz, J. Holden, and G. J. Beecher, Food Comp. Anal., 18, 487 (2005).CrossRefGoogle Scholar
  14. 14.
    I. Ikeda, Asia Pacific. J. Clin. Nutr., 17, 273 (2008).Google Scholar
  15. 15.
    S. M. Lee, C. W. Kim, C. K. Kim, H. J. Shin, and J. H. Biak, Lipids, 43, 419 (2008).CrossRefPubMedGoogle Scholar
  16. 16.
    C. S. Buelga and A. Scalbert, J. Sci. Food Agric., 80, 1094 (2000).CrossRefGoogle Scholar
  17. 17.
    H. P. Singh and K. Sharma, U.S. Patent 0298140 A1 (2009).Google Scholar
  18. 18.
    H. P. Singh and S. D. Ravindranath, J. Sci. Food Agric., 64, 117 (1994).CrossRefGoogle Scholar
  19. 19.
    S. Sang, C. S. Yang, and C. T. Ho, Phytochem. Rev., 3, 229 (2004).CrossRefGoogle Scholar
  20. 20.
    S. Patel, N. Gheewala, A. Suthar, and A. Shah, J. Pharm. Pharm. Sci., 1, 38 (2009).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ajay Rana
    • 1
  • Dharmesh Kumar
    • 2
  • Robin Joshi
    • 1
  • Ashu Gulati
    • 1
  • Harsh Pratap Singh
    • 1
  1. 1.Hill Area Tea Science DivisionPalampurIndia
  2. 2.Biotechnology DivisionCSIR-Institute of Himalayan Bioresource TechnologyPalampurIndia

Personalised recommendations