Advertisement

Chemistry of Natural Compounds

, Volume 51, Issue 3, pp 554–556 | Cite as

Chemical Constituents of the Fungus Monascus pilosus BCRC 38093-fermented Rice

  • Ming-Der Wu
  • Ming-Jen Cheng
  • Tai-Wei Liu
  • Yen-Lin Chen
  • Hing-Yuen Chan
  • Hui-Ping Chen
  • Wen-Jung Wu
  • Kai-Ping Chen
  • Gwo-Fang Yuan
Article

Red-mold rice (ang-kak, red koji) produced by Monascus species has traditionally been used in East Asia as a foodstuff in the production of natural food colorant, e.g., for red rice wine, red soybean cheese, meat, meat products, and fish. It is also used as a folk medicine [1]. Monascus sp. can produce many secondary metabolites, viz. ankaflavin and monascin (yellow pigment), monascorubrin and rubropunctanin (orange pigment), monascorubramine and rubropuctamine (red pigment) [2, 3], as well as the antihypercholesterolemic agent monacolin K (lovastatin) [4], the hypotensive agent γ-aminobutyric acid (GABA) [5], antioxidant compounds, dimerumic acid [6], and the antibacterial compound citrinin [7]. Monascus pilosus BCRC 38093 was mutated from M. pilosus BCRC 38072. Red mold-rice (RMR) fermented by M. pilosus BCRC 38093 showed high monacolin K production. The red mold-rice of M. pilosusBCRC 38093 was extracted with 95% ethanol. The extract was then partitioned with ethyl acetate and...

Keywords

Bicalutamide Citrinin Casodex Monascin Ankaflavin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The first two authors (M.-D. Wu and M.-J. Cheng) contributed equally to this work and should both be regarded as first author of this publication. This work was supported by a Grant from the Ministry of Economic Affairs of the Republic of China (Grant No. 94-EC-17-A-17-R7-0563). The authors thank Senior Technician Mrs. Chyi-Jia Wang of the Center for Resources, Research and Development (CRRD) of Kaohsiung Medical University (KMU) for measuring the 2D NMR data.

References

  1. 1.
    J. Ma, Y. Li, Q. Ye, J. Li, Y. Hua, D. Ju, D. Zhang, R. Cooper, and M. J. Chang, Agric. Food Chem., 48, 5220 (2000).CrossRefGoogle Scholar
  2. 2.
    P. J. Blanc, M. O. Loret, A. T. Santerre, A. Pareilleux, D. Prome, J. C. Prome, J. P. Laussac, and G. Goma, J. Food Sci., 59, 862 (1994).CrossRefGoogle Scholar
  3. 3.
    H. C. Wong and P. E. Koehler, J. Food Sci., 46, 589 (1981).CrossRefGoogle Scholar
  4. 4.
    A. Endo, J. Antibiot., 32, 852 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    Y. Kohama, S. Matsumoto, T. Mimura, N. Tanabe, A. Inada, and T. Nakanishi, Chem. Pharm. Bull., 35, 2484 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    Y. Aniya, I. I. Ohtani, T. Higa, C. Miyagi, H. Gibo, M. Shimabukuro, H. Nakanish, and J. Taira, Free Radic. Biol. Med., 286, 999 (1999).Google Scholar
  7. 7.
    P. J. Blanc, M. O. Loret, and G. Goma, Biotechnol. Lett., 17, 291 (1995).CrossRefGoogle Scholar
  8. 8.
    N. W. Su, Y. L. Lin, M. H. Lee, and C. Y. Ho, J. Agric. Food Chem., 53, 1949 (2005).PubMedCrossRefGoogle Scholar
  9. 9.
    E. Chairote, S. Lumyong, and G. Cairote, As. J. Food Ag-Ind., 3, 217 (2010).Google Scholar
  10. 10.
    T. W. Liu, Y. L. Chen, M. D. Wu, M. J. Cheng, H. P. Chen, W. J. Wu, K. P. Chen, Y. S. Lin, and G. F. Yuan, US 20100256227 A1 20101007, 2010.Google Scholar
  11. 11.
    T. Akihisa, T. Yasukawa, T. Suzuki, and T. Fukuoka, JP2008056618A, 2006.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ming-Der Wu
    • 1
  • Ming-Jen Cheng
    • 1
  • Tai-Wei Liu
    • 1
  • Yen-Lin Chen
    • 1
  • Hing-Yuen Chan
    • 1
  • Hui-Ping Chen
    • 1
  • Wen-Jung Wu
    • 1
  • Kai-Ping Chen
    • 1
  • Gwo-Fang Yuan
    • 1
  1. 1.Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI)HsinchuTaiwan

Personalised recommendations