Advertisement

Chemistry of Natural Compounds

, Volume 50, Issue 6, pp 1130–1131 | Cite as

Study of Volatiles in Lysimachia parvifolia Flower Using HS-SPME-GC-MS

  • Bao-cheng Yang
  • Zhen-hua Yin
  • Wenyi Kang
Article
  • 75 Downloads

Lysimachia parvifolia Hemsl. belongs to the Primulaceae family and is widely distributed in Yunnan, Guizhou, Hunan, Jiangxi, and Zhejiang Provinces in China. It is used as traditional chinese medicine to promote blood circulation clear away heat and toxic material, to relieve cough and asthma, to promote diuresis, and to expel stone [1].

Phytochemical research has shown that the main compounds in plants of Lysimachia genus are flavonoids and triterpenoid saponins. L. pentapetala, L. clethroides, and L. paridiformis contain essential oil [2, 3, 4]. Pharmacological investigations have shown that plants of Lysimachia have antitumor, bacteriostatic, anthelminthic, and antioxidation activities [5, 6, 7, 8]. No research has so far been conducted concerning the chemical composition and pharmacological activity of L. parvifolia. In order to identify the volatiles in the flowers of L. parvifolia, we report on their essential oils using the HS-SPME technique, which was subsequently supplemented...

Keywords

Limonene SPME Fiber Volatile Constituent Triterpenoid Saponin Peak Area Normalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This work was supported by Key project in Science and Technology Agency of Henan Province (102102310019 and 122102310272).

References

  1. 1.
    B. L. Guo, P. G. Xiao, and S. L. Yang, World. Notes. Plant. Med., 10, 159 (1995).Google Scholar
  2. 2.
    W. Y. Kang, J. M. Wang, and P. Y. Tian, Chem. Nat. Compd., 47, 452 (2011).CrossRefGoogle Scholar
  3. 3.
    J. F. Wei, Z. H. Yin, and F. D. Shang, Afr. J. Pharm. Pharmacol., 6, 2484 (2012).Google Scholar
  4. 4.
    J. F. Wei, Q. Zhang, F. D. Shang, and W. Y. Kang, Chem. Nat. Compd., 47, 454 (2011).CrossRefGoogle Scholar
  5. 5.
    F. F. Gao, D. Zhao, and J. Deng, Chin. JMAP, 28, 907 (2011).Google Scholar
  6. 6.
    H. T. Chang, W. L. Kong, and P. F. Tu, Chin. J. Chin. Mater. Med., 29, 295 (2004).Google Scholar
  7. 7.
    J. K. Tian, Z. M. Zou, L. Z. Xu, and S. L. Yang, Int. J. Trad. Chin. Med., 24, 80 (2002).Google Scholar
  8. 8.
    X. A. Huang and R. Z. Yang, J. Trop. Subtr. Bot., 15, 175 (2007).Google Scholar
  9. 9.
    W. Y. Kang, Z. Q. Ji, and J. M. Wang, Chem. Nat. Compd., 45, 575 (2009).CrossRefGoogle Scholar
  10. 10.
    W. Y. Kang, J. M. Wang, Z. Q. Ji, and Q. T. Xu, Nat. Prod. Res. Dev., 21, 84 (2009).Google Scholar
  11. 11.
    J. F. Wei, Z. H. Yin, and W. Y. Kang, Chem. Nat. Compd., 49, 154 (2013).CrossRefGoogle Scholar
  12. 12.
    X. M. Wang, H. Chen, X. J. Li, Y. H. Sun, and H. L. Gao, J. Jilin Agric. Univ., 32, 24 (2010).Google Scholar
  13. 13.
    W. J. Wang, Chin. Food Addit., 1, 33 (2005).Google Scholar
  14. 14.
    Z. Y. Yin, Q. J. Wang, and Y. Jia, Chin. J. Clin. Pharmacol. Ther., 11, 197 (2006).Google Scholar
  15. 15.
    M. Luo, G. L. Zou, and L. K. Jiang, J. Wuhan Univ. (Nat. Sci. Ed.), 47, 745 (2001).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Huanghe Science and Technology CollegeZhengzhouP. R. China

Personalised recommendations