Advertisement

Chemistry of Natural Compounds

, Volume 50, Issue 5, pp 876–879 | Cite as

A New Quinolizidine Alkaloid from Sophora flavescens

  • Wang Lei
  • Wu Xing-De
  • He Juan
  • Li Gen-Tao
  • Peng Li-Yan
  • Li Yan
  • Song Liu-Dong
  • Zhao Qin-Shi
Article

We studied the alkaloid constituents and bioactivity of Sophora flavescens (Leguminosae). The constituents were isolated with silica gel column chromatography, semi-preparative HPLC, Sephadex LH-20, and MPLC packed with MCI gel, and their structures were elucidated on the basis of physical characteristics and spectral data. Compounds 1 and 5–8 were evaluated for their in vitro cytotoxicity against human tumor HL-60, SMMC-7721, A-549, MCF-7, and SW-480 cell lines. Ten alkaloids were obtained, and their structures were identified as 17β-hydroxysophoridine (1), matrine (2), sophocarpine (3), sophoridine (4), isomatrine (5), 7,11-dehydromatrine (6), mamanine (7), sophoranol (8), oxymatrine (9), and oxysophocarpine (10). Compound 1 is a new alkaloid, and compound 7 was isolated from the Sophora flavescens for the first time. None of the compounds were cytotoxic to five human cancer cell lines.

Keywords

Sophora flavescens Leguminosae alkaloids cytotoxicity 

Notes

Acknowledgment

This work was financially supported by the National Natural Science Foundation (Grant Nos. U0932602 and 90813004) and the 973 Program (Grant Nos. 2011CB915503 and 2009CB522300).

References

  1. 1.
    K. L. Miao, J. Z. Zhang, Y. Dong, and Y. F. Xi, Nat. Prod. Res. Dev., 13, 69 (2001).Google Scholar
  2. 2.
    R. Shakirov, M. V. Telezhenetskaya, I. A. Bessonova, S. F. Aripova, I. A. Israilov, M. N. Sultankhodzhaev, V. I. Vinogradova, V. I. Akhmedzhanova, T. S. Tulyaganov, B. T. Salimov, and V. A. Tel’nov, Chem. Nat. Compd., 32, 102 (1996).CrossRefGoogle Scholar
  3. 3.
    S. S. Zhang, Y. L. An, Y. Hua, R. Lei, and Z. Z. Du, Chin. J. Ethnomed. Ethnopharm., 17, 8 (2008).Google Scholar
  4. 4.
    D. Li, H. J. Zuo, H. Y. Gao, and L. J. Wu, J. Shenyang Pharm. Univ., 21, 346 (2004).Google Scholar
  5. 5.
    V. Galasso, F. Asaro, F. Berti, B. Pergolese, B. Kovac, and F. Pichierri, Chem. Phys., 330, 457 (2006).CrossRefGoogle Scholar
  6. 6.
    A. Ueno, K. Morinaga, S. Fukushima, Y. Litaka, Y. Koiso, and S. Okuda, Chem. Pharm. Bull., 23, 2560 (1975).CrossRefGoogle Scholar
  7. 7.
    I. Murakoshi, E. Kidoguchi, J. Haginiwa, S. Ohmiya, K. Higashiyama, and H. Otomasu, Phytochemistry, 21, 2379 (1982).CrossRefGoogle Scholar
  8. 8.
    M. M. Kadooka, M. Y. Chang, H. Fukami, P. J. Scheuer, J. Clardy, B. A. Solheim, and J. P. Springer, Tetrahedron, 32, 919 (1976).CrossRefGoogle Scholar
  9. 9.
    Y. Y. Zhao, Q. Y. Pang, J. B. Liu, Y. Y. Chen, and Z. C. Lou, Nat. Prod. Res. Dev., 6, 15 (1994).Google Scholar
  10. 10.
    Z. Lin, C. F. Huang, X. S. Liu, and J. K. Jiang, Basic Clin. Pharmacol. Toxicol., 108, 304 (2010).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paul, D. Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, M. Gray-Goodrich, H. Campbell, J. Mayo, and M. Boyd, J. Natl. Cancer Inst., 83, 757 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural ProductsKunming Medical UniversityKunmingP. R. China
  2. 2.State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of BotanyChinese Academy of SciencesKunmingP. R. China

Personalised recommendations