Chemistry of Natural Compounds

, Volume 50, Issue 4, pp 774–775 | Cite as

Oxidation of Terpenoids with a Cyclohexanone Fragment by Performic Acid

  • V. A. Vydrina
  • Yu. A. Galkina
  • R. R. Muslukhov
  • A. A. Kravchenko
  • G. Yu. Ishmuratov

Performic acid is a reactive, inexpensive, and available reagent for Baeyer–Villager oxidation of ketones that is used infrequently in the chemistry of cyclic terpene ketones, e.g., only for the oxidation of isocaranone [1] and allobetulone [2].

The goal of the present work was to expand the scope of this reagent for the oxidation of terpenoids with a cyclohexanone fragment. We found that Baeyer–Villager oxidation of 28-oxoallobetulin-3-one ( 1), carvomenthone ( 2), and menthone ( 3) by performic acid occurred regio- and stereospecifically to give lactones 57, respectively. Oxidation of isomenthone ( 4) by H2O2–HCOOH caused racemization of the asymmetric center with the isopropyl substituent (probably due to keto–enol tautomerism under acidic conditions) to give a mixture of diastereomeric lactones 7 and 8 (1:1), in contrast with diastereospecific m-chloroperbenzoic acid [ 3].


HCOOH Betulin Menthone Anisaldehyde Performic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. R. Dhillon, K. V. Gautam, S. Singh, and J. Singh, Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 30, 574 (1991).Google Scholar
  2. 2.
    J. Sejbal, J. Klinot, D. Hrncirova, and A. Vystrcil, Collect. Czech. Chem. Commun., 50, 2753 (1985).CrossRefGoogle Scholar
  3. 3.
    D. J. Marell, S. J. Emond, A. Kulsherstha, and R. Thomas, J. Org. Chem., 79, 752 (2014).PubMedCrossRefGoogle Scholar
  4. 4.
    O. B. Flekhter, O. Yu. Ashavina, I. E. Smirnova, L. A. Baltina, F. Z. Galin, N. N. Kabal′nova, and G. A. Tolstikov, Chem. Nat. Compd., 40, 141 (2004).CrossRefGoogle Scholar
  5. 5.
    F. N. Lugemwa, F.-Y. Huang, M. D. Bentley, M. J. Mendel, and A. R. Alford, J. Agric. Food Chem., 38, 493 (1990).CrossRefGoogle Scholar
  6. 6.
    S. Qian, H. Li, Y. Chen, W. Zhang, S. Yang, and Y. Wu, J. Nat. Prod., 73, 1743 (2010).PubMedCrossRefGoogle Scholar
  7. 7.
    O. B. Kazakova, E. F. Khusnutdinova, A. N. Lobov, T. I. Zvereva, Yu. V. Legostaeva, G. A. Tolstikov, and V. N. Khrustalev, Izv. Akad. Nauk, Ser. Khim., 8, 1753 (2011).Google Scholar
  8. 8.
    O. B. Kazakova, E. F. Khusnutdinova, O. S. Kukovinets, T. I. Zvereva, and G. A. Tolstikov, Chem. Nat. Compd., 46, 393 (2010).CrossRefGoogle Scholar
  9. 9.
    G. Papori, H. Saroj, M. Das Archana, and C. Pritish, Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 43, 1275 (2004).Google Scholar
  10. 10.
    P. Cernuchova and M. D. Mihovilovic, Org. Biomol. Chem., 5, 1715 (2007).PubMedCrossRefGoogle Scholar
  11. 11.
    G. Yu. Ishmuratov, M. P. Yakovleva, V. A. Vydrina, E. F. Khasanova, R. R. Muslukhov, N. M. Ishmuratova, and G. A. Tolstikov, Khim. Rastit. Syr′ya, 23 (2007).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. A. Vydrina
    • 1
  • Yu. A. Galkina
    • 1
  • R. R. Muslukhov
    • 1
  • A. A. Kravchenko
    • 1
  • G. Yu. Ishmuratov
    • 1
  1. 1.Institute of Organic Chemistry, Ufa Scientific CenterRussin Academy of SciencesUfaRussia

Personalised recommendations