Advertisement

Chemistry of Natural Compounds

, Volume 50, Issue 3, pp 565–567 | Cite as

Biotransformation of Ginsenoside Rc into C-Mc1 by the Bacterium Sphingopyxis sp. BG97

  • L. N. Ten
  • S. M. Chae
  • S.-A. Yoo
Article

The principal biologically active compounds of Panax ginseng C. A. Meyer are triterpenoid glycosides, ginsenosides [1], which exhibit immunostimulating, anti-inflammatory, anticarcinogenic, antitumor, antidiabetic, hepatoprotective, neuromodulating, and other properties [2]. Greater than 50 different ginsenosides have been isolated from P. ginseng. Six of these (Rb1, Rb2, Rc, Rd, Re, and Rg1) make up >80% of total saponins and have protopanaxadiol or protopanaxatriol as the aglycon [1]. Furthermore, it is well known that minor glycosides of P. ginseng in several instances have broader spectra of biological activity or are more active than them [2]. This stimulates great interest in producing the minor ginsenosides, including biotransformation of the principal ginsenosides using various microorganisms [3, 4].

We reported earlier the transformation of ginsenoside Rb1 into the minor glycoside F-2 and compound K [ 5] and glycoside Rd into minor ginsenoside (20 S)-Rg 3 [ 6] using bacteria...

Keywords

Ginsenoside BuOH Ginseng Root Biotransformation Product Human Stomach Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. P. Christensen, Adv. Food Nutr. Res., 55, 1 (2009).PubMedCrossRefGoogle Scholar
  2. 2.
    K. W. Leung, Natural Products, K. G. Ramawat and J. M. Merillon (eds.), Springer, Berlin, 2013, p. 3498.Google Scholar
  3. 3.
    C.-H. Cui, S.-C. Kim, and W.-T. Im, Appl. Microbiol. Biotechnol., 97, 649 (2013).PubMedCrossRefGoogle Scholar
  4. 4.
    K.-C. Shin and D.-K. Oh, J. Biotechnol., 172, 30 (2014).PubMedCrossRefGoogle Scholar
  5. 5.
    L. N. Ten, S. M. Chae, and S.-A. Yoo, Chem. Nat. Compd., 49, 1168 (2014).CrossRefGoogle Scholar
  6. 6.
    L. N. Ten, S. M. Chae, and S.-A. Yoo, Chem. Nat. Compd., 50, 181 (2014).CrossRefGoogle Scholar
  7. 7.
    M. Lee, L. N. Ten, H. W. Lee, H. W. Oh, W. T. Im, and S. T. Lee, Int. J. Syst. Evol. Microbiol., 58, 2342 (2008).PubMedCrossRefGoogle Scholar
  8. 8.
    a) M. C. Yang, D. S. Seo, J. Hong, S. H. Hong, Y. C. Kim, and K. R. Lee, Nat. Prod. Sci., 14, 171 (2008); b) L. N. Ten, S. M. Chae, and S.-A. Yoo, Chem. Nat. Compd., 50, 562 (2014) [preceding article].Google Scholar
  9. 9.
    L. N. Ten, S. M. Chae, and S.-A. Yoo, Chem. Nat. Compd., 49, 773 (2013).CrossRefGoogle Scholar
  10. 10.
    X. Zhao, J. Gao, C. Song, Q. Fang, N. Wang, T. Zhao, D. Liu, and Y. Zhou, Photochemistry, 78, 65 (2012).CrossRefGoogle Scholar
  11. 11.
    M. Hao, L. Zhang, Y. Zheng, C. Song, Y. Zhou, and X. Cong, J. Chem. Pharm. Res., 5, 141 (2013).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Biology and Medicinal SciencePai Chai UniversityDaejeonRepublic of Korea

Personalised recommendations