Chemistry of Natural Compounds

, Volume 50, Issue 2, pp 360–362 | Cite as

Liquid Chromatography Coupled with Q-TOF Mass Spectrometry for the Characterization of Phenolics from Acacia Catechu

  • C. T. Sulaiman
  • V. K. Gopalakrishnan

Liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) has been recognized as a powerful analytical tool for the identification of phytochemicals due to its high sensitivity, short run time, and less use of toxic organic solvents used as mobile phase compared to reversed-phase standalone HPLC coupled with an diode-array detector [1]. Accurate mass measurement is an important feature of Q-TOF MS/MS, which is useful to differentiate compounds with the same nominal mass but dissimilar exact masses. Generation of free radicals or reactive oxygen species (ROS) during metabolism and other activities beyond the antioxidant capacity of a biological system gives rise to oxidative stress [2], which plays a role in heart diseases, neurodegenerative diseases, cancer, and in the aging process [3]. This concept is supported by increasing evidence indicating that oxidative damage plays a role in the development of chronic, age-related degenerative diseases, and that dietary...


Quercetin Match Percentage Phenol Carboxylic Acid Photo Diode Array Detector Base Peak Chromatogram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are thankful to the authorities of Arya Vaidya Sala Kottakkal and the Vice Chancellor of Karpagam University for extending the facilities and TATA Trust, Mumbai for financial assistance.


  1. 1.
    R. Liu, J. Sun, K. Bi, and D. A. Guo, J. Chromatogr. B, 35 (2005).Google Scholar
  2. 2.
    W. Zheng and S. Y. Wang, J. Agric. Food Chem., 49, 5165 (2001).PubMedCrossRefGoogle Scholar
  3. 3.
    S. B. Astley, Trends Food Sci. Technol., 14, 93 (2003).CrossRefGoogle Scholar
  4. 4.
    A. K. Atoui, A. Mansouri, G. Boskou, and P. Kefalas, Food Chem., 89, 27 (2005).CrossRefGoogle Scholar
  5. 5.
    V. R. Khairullina, G. G. Garifullina, A. Ya. Gerchikov, L. A. Ostroukhova, and V. A. Babkin, Chem. Nat. Compd., 44, 158 (2008)CrossRefGoogle Scholar
  6. 6.
    B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, 1989 2nd ed.; Clarendon Press, Oxford, UKGoogle Scholar
  7. 7.
    Charles Mutai, Dennis Abatis, Constantinos Vagias, Dimitri Moreau, Christos Roussakis, Vassilios Roussis, Molecules, 12, 1035 (2007).PubMedCrossRefGoogle Scholar
  8. 8.
    B. N. Singh, B. R. Singh, R. L. Singh, D. Prakash, R. Dhakarey, G. Upadhyay, B. K. Sarma, and H. B. Singh, Food Chem. Toxicol., 47 (6), 1109 (2009).PubMedCrossRefGoogle Scholar
  9. 9.
    B. A. Clement, C. M. Goff, and T. D. A. Forbes, Phytochemistry, 46, 249 (1999).CrossRefGoogle Scholar
  10. 10.
    K. Mujoo, V. Haridas, J. J. Hoffmann, G. A.Waochter, and L. Hutter, Cancer Res., 61, 5486 (2001).PubMedGoogle Scholar
  11. 11.
    K. Readel, D. Seigler, K. Hwang, J. Keesy, and S. Seilheimer, Econ. Bot., 55, 212 (2001).CrossRefGoogle Scholar
  12. 12.
    T. G. Fourie, D. Ferreira, and D. G. Roux, Phytochemistry, 13, 2573 (1974).CrossRefGoogle Scholar
  13. 13.
    R. N. Chopra, S. L. Nayar, and I. C. Chopra, Glossary of Indian Medicinal Plants, NISCOM, CSIR, New Delhi, India, 1999.Google Scholar
  14. 14.
    J. Okpuzar, H. Ogbunugafor, G. K. Kareem, and M. N. Igwo-Ezikpe, Res. J. Photochem., 3 (4), 68 (2009).CrossRefGoogle Scholar
  15. 15.
    Mike S. Lee and Edward H. Kerns, Mass Spectrom. Rev., 18, 188 (1999).Google Scholar
  16. 16.
    W. Mullen, T. Yokota, M. E. J. Lean, and A. Crozier, Phytochemistry, 64, 617 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Phytochemistry DivisionCentre for Medicinal Plants ResearchArya Vaidya Sala KottakkalIndia
  2. 2.Department of BiochemistryKarpagam UniversityCoimbatoreIndia

Personalised recommendations