Advertisement

Chemistry of Natural Compounds

, Volume 50, Issue 2, pp 349–351 | Cite as

Anthraquinones of Rubia jesoensis Roots

  • N. P. Mishchenko
  • E. A. Vasil’eva
  • A. P. Sholokh
  • S. A. Dyshlovoi
  • S. A. Fedoreev
Article

Plants of the genus Rubia (Rubiaceae) are used traditionally in European and Asian countries as drugs and are included in preparations such as Cystenal, Cystone, and Madder Extract. Greater than 150 naphthoquinones, anthraquinones and their glycosides, iridoids, terpenes, and hexapeptides have been isolated from these plants. Many of these possessed antitumor, antiseptic, anti-inflammatory, antioxidant, hepatoprotective, and gastroprotective properties [1, 2, 3, 4, 5].

A complex of anthraquinones that exhibited pronounced anti-inflammatory properties and prevented the development of kidney stones in animals was isolated from R. cordifolia cell culture [6, 7]. In continuation of research on biologically active quinones, we studied for the first time the quinoid composition of R. jesoensis (Miq.) Miyabe et Miyake roots.

The plant was collected in southern Primorskii Territory, RF, on the shores of Troits Bay, Peter the Great Bay, during full flowering (July 2012). The species was...

Keywords

EtOH Anthraquinone Purpurin CHCl3 Fraction Trimethyl Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The work was supported financially by RFBR Grant 11-04-00770.

References

  1. 1.
    R. Singh, Geetanjali, and S. M. S. Chauhan, Chem. Biodiversity, 1, 1241 (2004).CrossRefGoogle Scholar
  2. 2.
    R. A. Muzychkina, Natural Anthraquinones. Biological Properties and Physicochemical Characteristics, Phasis, Moscow, 1998, 864 pp.Google Scholar
  3. 3.
    H. Itokawa, Z. Ibraheim, Y. Qiao, and K. Takeya, Chem. Pharm. Bull., 41, 1869 (1993).PubMedCrossRefGoogle Scholar
  4. 4.
    J. K. Son, S. J. Jung, J. H. Jung, Z. Fang, and C. S. Lee, Chem. Pharm. Bull., 56, 213 (2008).PubMedCrossRefGoogle Scholar
  5. 5.
    R. H. Thomson, Naturally Occurring Quinones, 2nd Ed., Academic Press, London, New York, 1971, p. 257.Google Scholar
  6. 6.
    N. P. Mishchenko, S. A. Fedoreev, V. M. Bryukhanov, Ya. F. Zverev, V. V. Lampatov, O. V. Azarova, Yu. N. Shrkryl’, and G. K. Chernoded, Khim.-farm. Zh., 41 (11), 38 (2007).Google Scholar
  7. 7.
    O. V. Azarova, V. M. Bryukhanov, Ya. F. Zverev, V. V. Lampatov, A. Yu. Zharikov, V. P. Bulgakov, and S. A. Fedoreev, Nefrologiya, 13 (2), 81 (2009).Google Scholar
  8. 8.
    N. P. Mischenko, S. A. Fedoreyev, V. P. Glazunov, G. K. Chernoded, V. P. Bulgakov, and Y. N. Zhuravlev, Fitoterapia, 70, 552 (1999).CrossRefGoogle Scholar
  9. 9.
    H. Itokawa, K. Mihara, and K. Takeya, Chem. Pharm. Bull., 31, 2353 (1983).CrossRefGoogle Scholar
  10. 10.
    K. Inoue, Y. Shiobara, H. Nayeshiro, H. Inouye, G. Wilson, and M. H. Zenk, Phytochemistry, 23, 307 (1984).CrossRefGoogle Scholar
  11. 11.
    Z. Zhou, S. H. Jiang, D. Y. Zhu, L. Z. Lin, and G. A. Cordell, Phytochemistry, 36, 765 (1994).CrossRefGoogle Scholar
  12. 12.
    I. Boldizsar, Z. Szucs, Z. Fuzfai, and I. Molnar-Perl, J. Chromatogr. A, 1133, 259 (2006).PubMedCrossRefGoogle Scholar
  13. 13.
    J. A. Barltrop, T. C. Owen, A. H. Cory, and J. G. Cory, Bioorg. Med. Chem. Lett., 1, 611 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • N. P. Mishchenko
    • 1
  • E. A. Vasil’eva
    • 1
  • A. P. Sholokh
    • 1
  • S. A. Dyshlovoi
    • 1
  • S. A. Fedoreev
    • 1
  1. 1.G. B. Elyakov Pacific Institute of Bioorganic ChemistryFar-East Branch, Russian Academy of SciencesVladivostokRussia

Personalised recommendations